Back to Search Start Over

Ultra-compact optical switches using slow light bimodal silicon waveguides

Authors :
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
GENERALITAT VALENCIANA
AGENCIA ESTATAL DE INVESTIGACION
European Regional Development Fund
Torrijos-Morán, Luis
Brimont, Antoine Christian Jacques
Griol Barres, Amadeu
Sanchis Kilders, Pablo
García-Rupérez, Jaime
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
GENERALITAT VALENCIANA
AGENCIA ESTATAL DE INVESTIGACION
European Regional Development Fund
Torrijos-Morán, Luis
Brimont, Antoine Christian Jacques
Griol Barres, Amadeu
Sanchis Kilders, Pablo
García-Rupérez, Jaime
Publication Year :
2021

Abstract

[EN] Switches are essential components in several optical applications, in which reduced footprints are highly desirable for mass production of densely integrated circuits at low cost. However, most conventional solutions rely on making long switching structures, thus increasing the final device size. Here, we propose and experimentally demonstrate an ultra-compact 2x2 optical switch based on slow-light-enhanced bimodal interferometry in one-dimensional silicon photonic crystals. By properly designing the band structure, the device exhibits a large group index contrast between the fundamental even mode and a higher order odd mode for TE polarization. Thereby, highly dispersive and broadband bimodal regions for high-performance operation are engineered by exploiting the different symmetry of the modes. Two configurations are considered in the experiments to analyze the dimensions influence on the switching efficiency. As a result, a photonic switch based on a bimodal single-channel interferometer with a footprint of only 63 mu m(2), a power consumption of 19.5 mW and a crosstalk of 15 dB is demonstrated for thermo-optic tunability.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1334345257
Document Type :
Electronic Resource