Back to Search Start Over

Maximal Factorization of Operators Acting in Kothe-Bochner Spaces

Authors :
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Ministerio de Educación y Ciencia
MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD
Consejo Nacional de Ciencia y Tecnología, México
Calabuig, J. M.
Fernández-Unzueta, M.
Galaz-Fontes, F.
Sánchez Pérez, Enrique Alfonso
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Ministerio de Educación y Ciencia
MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD
Consejo Nacional de Ciencia y Tecnología, México
Calabuig, J. M.
Fernández-Unzueta, M.
Galaz-Fontes, F.
Sánchez Pérez, Enrique Alfonso
Publication Year :
2021

Abstract

[EN] Using some representation results for Kothe-Bochner spaces of vector valued functions by means of vector measures, we analyze the maximal extension for some classes of linear operators acting in these spaces. A factorization result is provided, and a specific representation of the biggest vector valued function space to which the operator can be extended is given. Thus, we present a generalization of the optimal domain theorem for some types of operators on Banach function spaces involving domination inequalities and compactness. In particular, we show that an operator acting in Bochner spaces of p-integrable functions for any 1

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1334338550
Document Type :
Electronic Resource