Back to Search Start Over

MIX-MAB: Reinforcement Learning-based Resource Allocation Algorithm for LoRaWAN

Authors :
Azizi, Farzad
Teymuri, Benyamin
Aslani, Rojin
Rasti, Mehdi
Tolvanen, Jesse
Nardelli, Pedro H. J.
Azizi, Farzad
Teymuri, Benyamin
Aslani, Rojin
Rasti, Mehdi
Tolvanen, Jesse
Nardelli, Pedro H. J.
Publication Year :
2022

Abstract

This paper focuses on improving the resource allocation algorithm in terms of packet delivery ratio (PDR), i.e., the number of successfully received packets sent by end devices (EDs) in a long-range wide-area network (LoRaWAN). Setting the transmission parameters significantly affects the PDR. Employing reinforcement learning (RL), we propose a resource allocation algorithm that enables the EDs to configure their transmission parameters in a distributed manner. We model the resource allocation problem as a multi-armed bandit (MAB) and then address it by proposing a two-phase algorithm named MIX-MAB, which consists of the exponential weights for exploration and exploitation (EXP3) and successive elimination (SE) algorithms. We evaluate the MIX-MAB performance through simulation results and compare it with other existing approaches. Numerical results show that the proposed solution performs better than the existing schemes in terms of convergence time and PDR.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1333776439
Document Type :
Electronic Resource