Back to Search Start Over

RubCSG at SemEval-2022 Task 5: Ensemble learning for identifying misogynous MEMEs

Authors :
Yu, Wentao
Boenninghoff, Benedikt
Roehrig, Jonas
Kolossa, Dorothea
Yu, Wentao
Boenninghoff, Benedikt
Roehrig, Jonas
Kolossa, Dorothea
Publication Year :
2022

Abstract

This work presents an ensemble system based on various uni-modal and bi-modal model architectures developed for the SemEval 2022 Task 5: MAMI-Multimedia Automatic Misogyny Identification. The challenge organizers provide an English meme dataset to develop and train systems for identifying and classifying misogynous memes. More precisely, the competition is separated into two sub-tasks: sub-task A asks for a binary decision as to whether a meme expresses misogyny, while sub-task B is to classify misogynous memes into the potentially overlapping sub-categories of stereotype, shaming, objectification, and violence. For our submission, we implement a new model fusion network and employ an ensemble learning approach for better performance. With this structure, we achieve a 0.755 macroaverage F1-score (11th) in sub-task A and a 0.709 weighted-average F1-score (10th) in sub-task B.<br />Comment: 10 pages

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1333763154
Document Type :
Electronic Resource