Back to Search Start Over

Locally Fair Partitioning

Authors :
Agarwal, Pankaj K.
Ko, Shao-Heng
Munagala, Kamesh
Taylor, Erin
Agarwal, Pankaj K.
Ko, Shao-Heng
Munagala, Kamesh
Taylor, Erin
Publication Year :
2021

Abstract

We model the societal task of redistricting political districts as a partitioning problem: Given a set of $n$ points in the plane, each belonging to one of two parties, and a parameter $k$, our goal is to compute a partition $\Pi$ of the plane into regions so that each region contains roughly $\sigma = n/k$ points. $\Pi$ should satisfy a notion of ''local'' fairness, which is related to the notion of core, a well-studied concept in cooperative game theory. A region is associated with the majority party in that region, and a point is unhappy in $\Pi$ if it belongs to the minority party. A group $D$ of roughly $\sigma$ contiguous points is called a deviating group with respect to $\Pi$ if majority of points in $D$ are unhappy in $\Pi$. The partition $\Pi$ is locally fair if there is no deviating group with respect to $\Pi$. This paper focuses on a restricted case when points lie in $1$D. The problem is non-trivial even in this case. We consider both adversarial and ''beyond worst-case" settings for this problem. For the former, we characterize the input parameters for which a locally fair partition always exists; we also show that a locally fair partition may not exist for certain parameters. We then consider input models where there are ''runs'' of red and blue points. For such clustered inputs, we show that a locally fair partition may not exist for certain values of $\sigma$, but an approximate locally fair partition exists if we allow some regions to have smaller sizes. We finally present a polynomial-time algorithm for computing a locally fair partition if one exists.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1333739202
Document Type :
Electronic Resource