Back to Search Start Over

Heat dissipation in few-layer MoS2and MoS2/hBN heterostructure

Authors :
European Commission
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Generalitat de Catalunya
Ministerio de Economía y Competitividad (España)
Ministry of Education, Culture, Sports, Science and Technology (Japan)
Japan Society for the Promotion of Science
Arrighi, Aloïs
Corro, Elena del
Navarro-Urrios, D.
Costache, Marius V.
Sierra, Juan F.
Watanabe, Kenji
Taniguchi, Takashi
Garrido, Jose A.
Valenzuela, Sergio O.
Sotomayor Torres, C. M.
Sledzinska, Marianna
European Commission
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Generalitat de Catalunya
Ministerio de Economía y Competitividad (España)
Ministry of Education, Culture, Sports, Science and Technology (Japan)
Japan Society for the Promotion of Science
Arrighi, Aloïs
Corro, Elena del
Navarro-Urrios, D.
Costache, Marius V.
Sierra, Juan F.
Watanabe, Kenji
Taniguchi, Takashi
Garrido, Jose A.
Valenzuela, Sergio O.
Sotomayor Torres, C. M.
Sledzinska, Marianna
Publication Year :
2022

Abstract

State-of-the-art fabrication and characterisation techniques have been employed to measure the thermal conductivity of suspended, single-crystalline MoS2 and MoS2/hBN heterostructures. Two-laser Raman scattering thermometry was used combined with real time measurements of the absorbed laser power. Measurements on MoS2 layers with thicknesses of 5 and 14 nm exhibit thermal conductivity in the range between 12 Wm-1 K-1 and 24 Wm-1 K-1. Additionally, after determining the thermal conductivity of the latter MoS2 sample, an hBN flake was transferred onto it and the effective thermal conductivity of the heterostructure was subsequently measured. Remarkably, despite that the thickness of the hBN layer was less than a hal of the thickness of the MoS2 layer, the heterostructure showed an almost eight-fold increase in the thermal conductivity, being able to dissipate more than ten times the laser power without any visible sign of damage. These results are consistent with a high thermal interface conductance G between MoS2 and hBN and an efficient in-plane heat spreading driven by hBN. Indeed, we estimate G ∼ 70 MW m-2 K-1 for hBN layer thermal conductivity of 450 Wm-1 K-1 which is significantly higher than previously reported values. Our work therefore demonstrates that the insertion of hBN layers in potential MoS2-based devices holds the promise for efficient thermal management.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1333186906
Document Type :
Electronic Resource