Back to Search
Start Over
Development of a machine learning based methodology for bridge health monitoring
- Source :
- TDX (Tesis Doctorals en Xarxa)
- Publication Year :
- 2022
-
Abstract
- Tesi en modalitat de compendi de publicacions<br />In recent years the scientific community has been developing new techniques in structural health monitoring (SHM) to identify the damages in civil structures specially in bridges. The bridge health monitoring (BHM) systems serve to reduce overall life-cycle maintenance costs for bridges, as their main objective is to prevent catastrophic failures and damages. In the BHM using dynamic data, there are several problems related to the post-processing of the vibration signals such as: (i) when the modal-based dynamic features like natural frequencies, modes shape and damping are used, they present a limitation in relation to damage location, since they are based on a global response of the structure; (ii) presence of noise in the measurement of vibration responses; (iii) inadequate use of existing algorithms for damage feature extraction because of neglecting the non-linearity and non-stationarity of the recorded signals; (iv) environmental and operational conditions can also generate false damage detections in bridges; (v) the drawbacks of traditional algorithms for processing large amounts of data obtained from the BHM. This thesis proposes new vibration-based parameters and methods with focus on damage detection, localization and quantification, considering a mixed robust methodology that includes signal processing and machine learning methods to solve the identified problems. The increasing volume of bridge monitoring data makes it interesting to study the ability of advanced tools and systems to extract useful information from dynamic and static variables. In the field of Machine Learning (ML) and Artificial Intelligence (AI), powerful algorithms have been developed to face problems where the amount of data is much larger (big data). The possibilities of ML techniques (unsupervised algorithms) were analyzed here in bridges taking into account both operational and environmental conditions. A critical literature review was performed and a deep study of the accuracy an<br />En los últimos años la comunidad científica ha desarrollado nuevas técnicas en monitoreo de salud estructural (SHM) para identificar los daños en estructuras civiles especialmente en puentes. Los sistemas de monitoreo de puentes (BHM) sirven para reducir los costos generales de mantenimiento del ciclo de vida, ya que su principal objetivo es prevenir daños y fallas catastróficas. En el BHM que utiliza datos dinámicos, existen varios problemas relacionados con el procesamiento posterior de las señales de vibración, tales como: (i) cuando se utilizan características dinámicas modales como frecuencias naturales, formas de modos y amortiguamiento, presentan una limitación en relación con la localización del daño, ya que se basan en una respuesta global de la estructura; (ii) presencia de ruido en la medición de las respuestas de vibración; (iii) uso inadecuado de los algoritmos existentes para la extracción de características de daño debido a la no linealidad y la no estacionariedad de las señales registradas; (iv) las condiciones ambientales y operativas también pueden generar falsas detecciones de daños en los puentes; (v) los inconvenientes de los algoritmos tradicionales para procesar grandes cantidades de datos obtenidos del BHM. Esta tesis propone nuevos parámetros y métodos basados en vibraciones con enfoque en la detección, localización y cuantificación de daños, considerando una metodología robusta que incluye métodos de procesamiento de señales y aprendizaje automático. El creciente volumen de datos de monitoreo de puentes hace que sea interesante estudiar la capacidad de herramientas y sistemas avanzados para extraer información útil de variables dinámicas y estáticas. En el campo del Machine Learning (ML) y la Inteligencia Artificial (IA) se han desarrollado potentes algoritmos para afrontar problemas donde la cantidad de datos es mucho mayor (big data). Aquí se analizaron las posibilidades de las técnicas ML (algoritmos no supervisados) teniendo en cuenta t<br />Postprint (published version)
Details
- Database :
- OAIster
- Journal :
- TDX (Tesis Doctorals en Xarxa)
- Notes :
- 245 p., application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1331652107
- Document Type :
- Electronic Resource