Back to Search Start Over

Machine-learning models for bankruptcy prediction: do industrial variables matter?

Authors :
Bragoli, Daniela
Ferretti, C.
Ganugi, P.
Marseguerra, Giovanni
Mezzogori, D.
Zammori, F.
Bragoli D. (ORCID:0000-0002-3448-6083)
Marseguerra G. (ORCID:0000-0002-1997-6121)
Bragoli, Daniela
Ferretti, C.
Ganugi, P.
Marseguerra, Giovanni
Mezzogori, D.
Zammori, F.
Bragoli D. (ORCID:0000-0002-3448-6083)
Marseguerra G. (ORCID:0000-0002-1997-6121)
Publication Year :
2021

Abstract

We provide a predictive model specifically designed for the Italian economy that classifies solvent and insolvent firms one year in advance using the AIDA Bureau van Dijk data set for the period 2007–15. We apply a full battery of bankruptcy forecasting models, including both traditional and more sophisticated machine-learning techniques, and add to the financial ratios used in the literature a set of industrial/regional variables. We find that XGBoost is the best performer, and that industrial/regional variables are important. Moreover, belonging to a district, having a high mark-up and a greater market share diminish bankruptcy probability.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1330708043
Document Type :
Electronic Resource