Back to Search
Start Over
Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom
- Publication Year :
- 2013
-
Abstract
- Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 27 (2013): 526–540, doi:10.1002/gbc.20050.<br />Satellite measurements allow global assessments of phytoplankton concentrations and, from observed temporal changes in biomass, direct access to net biomass accumulation rates (r). For the subarctic Atlantic basin, analysis of annual cycles in r reveals that initiation of the annual blooming phase does not occur in spring after stratification surpasses a critical threshold but rather occurs in early winter when growth conditions for phytoplankton are deteriorating. This finding has been confirmed with in situ profiling float data. The objective of the current study was to test whether satellite-based annual cycles in r are reproduced by the Biogeochemical Element Cycling–Community Climate System Model and, if so, to use the additional ecosystem properties resolved by the model to better understand factors controlling phytoplankton blooms. We find that the model gives a similar early onset time for the blooming phase, that this initiation is largely due to the physical disruption of phytoplankton-grazer interactions during mixed layer deepening, and that parallel increases in phytoplankton-specific division and loss rates during spring maintain the subtle disruption in food web equilibrium that ultimately yields the spring bloom climax. The link between winter mixing and bloom dynamics is illustrated by contrasting annual plankton cycles between regions with deeper and shallower mixing. We show that maximum water column inventories of phytoplankton vary in proportion to maximum winter mixing depth, implying that future reductions in winter mixing may dampen plankton cycles in the subarctic Atlantic. We propose that ecosystem disturbance-recovery sequences are a unifying property of global ocean plankton blooms.<br />This work was supported by the National Aeronautics and Space Administration, Ocean Biology and Biogeochemistry Program (grants NNX10AT70G, NNX09AK30G, NNX08AK70G, NNX07AL80G, and NNX08AP36A) and the Center for Microbial Oceanography Research and Education (C-MORE; grant EF-0424599), a National Science Foundation-supported Science and Technology Center.
Details
- Database :
- OAIster
- Notes :
- application/msword, application/pdf, en_US
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1329413516
- Document Type :
- Electronic Resource