Back to Search Start Over

Development and application of molecular assays for mosquito-borne alphaviruses in South Africa

Authors :
Dimaculangan, Micah
Burt, Felicity Jane
Dimaculangan, Micah
Burt, Felicity Jane
Publication Year :
2021

Abstract

Surveillance of mosquito-borne alphaviruses is critical for the prevention of diseases and the control of outbreaks caused by these viruses, especially with the absence of approved vaccines and antiviral treatments available. Hence, the continual development of rapid and reliable tools for the surveillance of alphaviruses is important. This will aid in the understanding of which viruses are currently circulating with the potential to cause outbreaks. Molecular nucleic acid amplification tests (NAATs), particularly conventional and real-time reverse transcription (RT)-polymerase chain reaction (PCR), are typically employed in epidemiological surveys. In this study, a conventional nested RT-PCR assay was developed to detect alphaviruses in South Africa. In addition, an isothermal amplification technique, specifically a RT-helicase dependent amplification (HDA) assay, which only requires a simple heating device, for instance a heating block, and lateral flow dipsticks/ cassettes for end point detection, was developed to detect alphaviruses currently circulating in South Africa, as an alternative to the RT-PCR assay for application in low resource settings or for field application. The conventional nested RT-PCR assay was able to detect ≥620 copies of RNA compared to the RT-HDA assay which had a minimum limit of detection of 4.8 x 105 copies of RNA. Both assays were tested for theoretical cross-reactivity with other alphaviruses, which include Sindbis virus (SINV) and chikungunya virus (CHIKV) isolates from other regions and genotypes, and isolates from alphaviruses such as Ross River virus (RRV), Barmah Forest virus (BFV), Mayaro virus (MAYV), eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV) and western equine encephalitis virus (WEEV) that are endemic to other parts of world. Alignment of the primers with the sequences of these isolates shows that both assays in theory would be able to detect SINV isolates from northern Europe, tak<br />National Research Foundation (NRF)<br />Department of Science and Technology (DST)<br />South African Research Chairs Initiative (SARChI)<br />Poliomyelitis Research Foundation

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1327982055
Document Type :
Electronic Resource