Back to Search Start Over

Artificial intelligence to detect papilledema from ocular fundus photographs

Authors :
Milea, Dan
Najjar, Raymond P.
Zhubo, Jiang
Ting, Daniel
Vasseneix, Caroline
Xu, Xinxing
Fard, Masoud Aghsaei
Fonseca, Pedro
Vanikieti, Kavin
Lagrèze, Wolf A.
La Morgia, Chiara
Cheung, Carol Y.
Hamann, Steffen
Chiquet, Christophe
Sanda, Nicolae
Yang, Hui
Mejico, Luis J.
Rougier, Marie Bénédicte
Kho, Richard
Chau, Tran Thi Ha
Singhal, Shweta
Gohier, Philippe
Clermont-Vignal, Catherine
Cheng, Ching Yu
Jonas, Jost B.
Yu-Wai-Man, Patrick
Fraser, Clare L.
Chen, John J.
Ambika, Selvakumar
Miller, Neil R.
Liu, Yong
Newman, Nancy J.
Wong, Tien Y.
Biousse, Valérie
Milea, Dan
Najjar, Raymond P.
Zhubo, Jiang
Ting, Daniel
Vasseneix, Caroline
Xu, Xinxing
Fard, Masoud Aghsaei
Fonseca, Pedro
Vanikieti, Kavin
Lagrèze, Wolf A.
La Morgia, Chiara
Cheung, Carol Y.
Hamann, Steffen
Chiquet, Christophe
Sanda, Nicolae
Yang, Hui
Mejico, Luis J.
Rougier, Marie Bénédicte
Kho, Richard
Chau, Tran Thi Ha
Singhal, Shweta
Gohier, Philippe
Clermont-Vignal, Catherine
Cheng, Ching Yu
Jonas, Jost B.
Yu-Wai-Man, Patrick
Fraser, Clare L.
Chen, John J.
Ambika, Selvakumar
Miller, Neil R.
Liu, Yong
Newman, Nancy J.
Wong, Tien Y.
Biousse, Valérie
Source :
Milea , D , Najjar , R P , Zhubo , J , Ting , D , Vasseneix , C , Xu , X , Fard , M A , Fonseca , P , Vanikieti , K , Lagrèze , W A , La Morgia , C , Cheung , C Y , Hamann , S , Chiquet , C , Sanda , N , Yang , H , Mejico , L J , Rougier , M B , Kho , R , Chau , T T H , Singhal , S , Gohier , P , Clermont-Vignal , C , Cheng , C Y , Jonas , J B , Yu-Wai-Man , P , Fraser , C L , Chen , J J , Ambika , S , Miller , N R , Liu , Y , Newman , N J , Wong , T Y & Biousse , V 2020 , ' Artificial intelligence to detect papilledema from ocular fundus photographs ' , New England Journal of Medicine , vol. 382 , no. 18 , pp. 1687-1695 .
Publication Year :
2020

Abstract

BACKGROUND Nonophthalmologist physicians do not confidently perform direct ophthalmoscopy. The use of artificial intelligence to detect papilledema and other optic-disk abnormalities from fundus photographs has not been well studied. METHODS We trained, validated, and externally tested a deep-learning system to classify optic disks as being normal or having papilledema or other abnormalities from 15,846 retrospectively collected ocular fundus photographs that had been obtained with pharmacologic pupillary dilation and various digital cameras in persons from multiple ethnic populations. Of these photographs, 14,341 from 19 sites in 11 countries were used for training and validation, and 1505 photographs from 5 other sites were used for external testing. Performance at classifying the optic-disk appearance was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity, and specificity, as compared with a reference standard of clinical diagnoses by neuro-ophthalmologists. RESULTS The training and validation data sets from 6779 patients included 14,341 photographs: 9156 of normal disks, 2148 of disks with papilledema, and 3037 of disks with other abnormalities. The percentage classified as being normal ranged across sites from 9.8 to 100%; the percentage classified as having papilledema ranged across sites from zero to 59.5%. In the validation set, the system discriminated disks with papilledema from normal disks and disks with nonpapilledema abnormalities with an AUC of 0.99 (95% confidence interval [CI], 0.98 to 0.99) and normal from abnormal disks with an AUC of 0.99 (95% CI, 0.99 to 0.99). In the external-testing data set of 1505 photographs, the system had an AUC for the detection of papilledema of 0.96 (95% CI, 0.95 to 0.97), a sensitivity of 96.4% (95% CI, 93.9 to 98.3), and a specificity of 84.7% (95% CI, 82.3 to 87.1). CONCLUSIONS A deep-learning system using fundus photographs with pharmacologically dilated pupils

Details

Database :
OAIster
Journal :
Milea , D , Najjar , R P , Zhubo , J , Ting , D , Vasseneix , C , Xu , X , Fard , M A , Fonseca , P , Vanikieti , K , Lagrèze , W A , La Morgia , C , Cheung , C Y , Hamann , S , Chiquet , C , Sanda , N , Yang , H , Mejico , L J , Rougier , M B , Kho , R , Chau , T T H , Singhal , S , Gohier , P , Clermont-Vignal , C , Cheng , C Y , Jonas , J B , Yu-Wai-Man , P , Fraser , C L , Chen , J J , Ambika , S , Miller , N R , Liu , Y , Newman , N J , Wong , T Y & Biousse , V 2020 , ' Artificial intelligence to detect papilledema from ocular fundus photographs ' , New England Journal of Medicine , vol. 382 , no. 18 , pp. 1687-1695 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1322759991
Document Type :
Electronic Resource