Back to Search Start Over

Effects of short-term graded dietary carbohydrate intake on intramuscular and whole-body metabolism during moderate-intensity exercise

Authors :
Maunder, Ed A
Bradley, Helen E
Deane, Colleen S
Hodgson, Adrian B
Jones, Michael
Joanisse, Sophie
Turner, Alice M
Breen, Leigh
Philp, Andrew
Wallis, Gareth Anthony
Maunder, Ed A
Bradley, Helen E
Deane, Colleen S
Hodgson, Adrian B
Jones, Michael
Joanisse, Sophie
Turner, Alice M
Breen, Leigh
Philp, Andrew
Wallis, Gareth Anthony
Publication Year :
2021

Abstract

Altering dietary carbohydrate (CHO) intake modulates fuel utilization during exercise. However, there has been no systematic evaluation of metabolic responses to graded changes in short-term (< 1 week) dietary CHO intake. Thirteen active men performed interval running exercise combined with isocaloric diets over 3 days before evaluation of metabolic responses to 60-min running at 65% V̇O2max on three occasions. Diets contained lower (LOW, 2.40 ± 0.66 g CHO.kg-1.d-1, 21.3 ± 0.5% of energy intake [EI]), moderate (MOD, 4.98 ± 1.31 g CHO.kg-1.d-1, 46.3 ± 0.7% EI), or higher (HIGH, 6.48 ± 1.56 g CHO.kg-1.d-1, 60.5 ± 1.6% EI) CHO. Pre-exercise muscle glycogen content was lower in LOW (54.3 ± 26.4 mmol.kg-1 wet weight [ww]) compared to MOD (82.6 ± 18.8 mmol.kg-1 ww) and HIGH (80.4 ± 26.0 mmol.kg-1 ww, P<0.001; MOD vs. HIGH, P=0.85). Whole-body substrate oxidation, systemic responses, and muscle substrate utilization during exercise indicated increased fat and decreased CHO metabolism in LOW (RER: 0.81 ± 0.01) compared to MOD (RER 0.86 ± 0.01, P = 0.0005) and HIGH (RER: 0.88 ± 0.01, P < 0.0001; MOD vs. HIGH, P=0.14). Higher basal muscle expression of genes encoding proteins implicated in fat utilization was observed in LOW. In conclusion, muscle glycogen availability and subsequent metabolic responses to exercise were resistant to increases in dietary CHO intake from ~5.0 to ~6.5 g CHO.kg-1.d-1 (46% to 61% EI), while muscle glycogen, gene expression and metabolic responses were sensitive to more marked reductions in CHO intake (~2.4 g CHO.kg-1.d-1, ~21% EI).

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1321980546
Document Type :
Electronic Resource