Back to Search
Start Over
Catalytically Active Copper Phosphate-Dextran Sulfate Microparticle Coatings for Bioanalyte Sensing
- Publication Year :
- 2020
-
Abstract
- Engineering reactive and functional nanostructured surfaces is important for enhancing the sensitivity and versatility of biosensors and microreactors. For example, the assembly of hybrid inorganic–organic porous microparticles on surfaces may provide a catalytic microenvironment for a wide range of reactions. Herein, the synthesis of catalytically active porous dextran sulfate–copper phosphate hybrid microparticles by a facile and rapid crystallization process in aqueous solution is reported. The sulfated polysaccharide enables control over the size and hierarchical morphology of the hybrid microparticles, as well as their assembly into stable macroporous coatings. The engineered microparticle coatings display intrinsic nonenzymatic peroxidase‐like catalytic activity when employed as a platform for the detection of hydrogen peroxide. Pairing of the microparticle coating with glucose oxidase affords a hybrid platform that is employed as a glucose sensor for monitoring physiological concentrations of a given analyte via a hybrid enzymatic/nonenzymatic cascade reaction. This work presents a strategy for the assembly of hybrid porous microparticles into enzyme‐mimicking surfaces for copper‐based catalysis and biochemical analyte sensing.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1315700329
- Document Type :
- Electronic Resource