Back to Search Start Over

A pilot study investigating a novel particle-based growth factor delivery system for preimplantation embryo culture

Authors :
Gurner, KH
Richardson, JJ
Harvey, AJ
Gardner, DK
Gurner, KH
Richardson, JJ
Harvey, AJ
Gardner, DK
Publication Year :
2021

Abstract

STUDY QUESTION: Can vascular endothelial growth factor (VEGF)-loaded silica supraparticles (V-SPs) be used as a novel mode of delivering VEGF to the developing preimplantation embryo in vitro? SUMMARY ANSWER: Supplementation of embryo culture media with V-SPs promoted embryonic development in a manner equivalent to media supplemented with free VEGF. WHAT IS KNOWN ALREADY: VEGF is a maternally derived growth factor that promotes preimplantation embryonic development in vitro. However, its use in clinical media has limitations due to its low stability in solution. STUDY DESIGN, SIZE, DURATION: This study was a laboratory-based analysis utilising a mouse model. V-SPs were prepared in vitro and supplemented to embryonic culture media. The bioactivity of V-SPs was determined by analysis of blastocyst developmental outcomes (blastocyst development rate and total cell number). PARTICIPANTS/MATERIALS, SETTING, METHODS: SPs were loaded with fluorescently labelled VEGF and release kinetics were characterised. Bioactivity of unlabelled VEGF released from V-SPs was determined by analysis of embryo developmental outcomes (blastocyst developmental rate and total cell number) following individual mouse embryo culture in 20 µl of G1/G2 media at 5% oxygen, supplemented with 10 ng/ml recombinant mouse VEGF in solution or with V-SPs. The bioactivity of freeze-dried V-SPs was also assessed to determine the efficacy of cryostorage. MAIN RESULTS AND THE ROLE OF CHANCE: VEGF release kinetics were characterised by an initial burst of VEGF from loaded spheres followed by a consistent lower level of VEGF release over 48 h. VEGF released from V-SPs resulted in significant increases in total blastocyst cell number relative to the control (P < 0.001), replicating the effects of medium freely supplemented with fresh VEGF (P < 0.001). Similarly, freeze dried V-SPs exerted comparable effects on embryonic development (P < 0.05). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: In this proof

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1315697467
Document Type :
Electronic Resource