Back to Search Start Over

Directed evolution and targeted mutagenesis to murinize listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model

Authors :
Monk, IR
Casey, PG
Hill, C
Gahan, CGM
Monk, IR
Casey, PG
Hill, C
Gahan, CGM
Publication Year :
2010

Abstract

BACKGROUND: Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells. RESULTS: We have created a surface display library of randomly mutated InlA in a non-invasive heterologous host Lactococcus lactis in order to create and screen novel variants of this invasion factor. After sequential passage through a murine cell line (CT-26), multiple clones with enhanced invasion characteristics were identified. Competitive index experiments were conducted in mice using selected mutations introduced into L. monocytogenes EGD-e background. A novel single amino acid change was identified which enhanced virulence by the oral route in the murine model and will form the basis of further engineering approaches. As a control a previously described EGD-InlA(m) murinized strain was also re-created as part of this study with minor modifications and designated EGD-e InlA(m)*. The strain was created using a procedure that minimizes the likelihood of secondary mutations and incorporates Listeria-optimized codons encoding the altered amino acids. L. monocytogenes EGD-e InlA(m)* yielded consistently higher level murine infections by the oral route when compared to EGD-e, but did not display the two-fold increased invasion into a human cell line that was previously described for the EGD-InlA(m) strain. CONCLUSIONS: We have used both site-directed mutagenesis and directed evolution to create variants of InlA which may inform future structure-function analyses of this protein. During the course of the study we engineered a murinized strain of L. monocytogenes EGD-e which shows reproducibly higher infectivity in the intragastric murine infection model than the wild type, but does not display enhanced entry into human c

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1315678285
Document Type :
Electronic Resource