Back to Search Start Over

Incorporating radiomics into clinical trials:expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers

Authors :
Fournier, Laure
Costaridou, Lena
Bidaut, Luc
Michoux, Nicolas
Lecouvet, Frederic E.
de Geus-Oei, Lioe Fee
Boellaard, Ronald
Oprea-Lager, Daniela E.
Obuchowski, Nancy A.
Caroli, Anna
Kunz, Wolfgang G.
Oei, Edwin H.
O’Connor, James P.B.
Mayerhoefer, Marius E.
Franca, Manuela
Alberich-Bayarri, Angel
Deroose, Christophe M.
Loewe, Christian
Manniesing, Rashindra
Caramella, Caroline
Lopci, Egesta
Lassau, Nathalie
Persson, Anders
Achten, Rik
Rosendahl, Karen
Clement, Olivier
Kotter, Elmar
Golay, Xavier
Smits, Marion
Dewey, Marc
Sullivan, Daniel C.
van der Lugt, Aad
deSouza, Nandita M.
European Society of Radiology, Society of Radiology
Fournier, Laure
Costaridou, Lena
Bidaut, Luc
Michoux, Nicolas
Lecouvet, Frederic E.
de Geus-Oei, Lioe Fee
Boellaard, Ronald
Oprea-Lager, Daniela E.
Obuchowski, Nancy A.
Caroli, Anna
Kunz, Wolfgang G.
Oei, Edwin H.
O’Connor, James P.B.
Mayerhoefer, Marius E.
Franca, Manuela
Alberich-Bayarri, Angel
Deroose, Christophe M.
Loewe, Christian
Manniesing, Rashindra
Caramella, Caroline
Lopci, Egesta
Lassau, Nathalie
Persson, Anders
Achten, Rik
Rosendahl, Karen
Clement, Olivier
Kotter, Elmar
Golay, Xavier
Smits, Marion
Dewey, Marc
Sullivan, Daniel C.
van der Lugt, Aad
deSouza, Nandita M.
European Society of Radiology, Society of Radiology
Source :
Fournier , L , Costaridou , L , Bidaut , L , Michoux , N , Lecouvet , F E , de Geus-Oei , L F , Boellaard , R , Oprea-Lager , D E , Obuchowski , N A , Caroli , A , Kunz , W G , Oei , E H , O’Connor , J P B , Mayerhoefer , M E , Franca , M , Alberich-Bayarri , A , Deroose , C M , Loewe , C , Manniesing , R , Caramella , C , Lopci , E , Lassau , N , Persson , A , Achten , R , Rosendahl , K , Clement , O , Kotter , E , Golay , X , Smits , M , Dewey , M , Sullivan , D C , van der Lugt , A , deSouza , N M & European Society of Radiology , S O R 2021 , ' Incorporating radiomics into clinical trials : expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers ' , European Radiology , vol. 31 , no. 8 , pp. 6001-6012 .
Publication Year :
2021

Abstract

Abstract: Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. Key Points: • Data-driven processes like radiomics risk false discoveries due to high-dimensional

Details

Database :
OAIster
Journal :
Fournier , L , Costaridou , L , Bidaut , L , Michoux , N , Lecouvet , F E , de Geus-Oei , L F , Boellaard , R , Oprea-Lager , D E , Obuchowski , N A , Caroli , A , Kunz , W G , Oei , E H , O’Connor , J P B , Mayerhoefer , M E , Franca , M , Alberich-Bayarri , A , Deroose , C M , Loewe , C , Manniesing , R , Caramella , C , Lopci , E , Lassau , N , Persson , A , Achten , R , Rosendahl , K , Clement , O , Kotter , E , Golay , X , Smits , M , Dewey , M , Sullivan , D C , van der Lugt , A , deSouza , N M & European Society of Radiology , S O R 2021 , ' Incorporating radiomics into clinical trials : expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers ' , European Radiology , vol. 31 , no. 8 , pp. 6001-6012 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1313637094
Document Type :
Electronic Resource