Back to Search Start Over

Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders

Authors :
Wesseling, H
Guest, PC
Lee, CM
Wong, EHF
Rahmoune, H
Bahn, Sabine
Wesseling, H
Guest, PC
Lee, CM
Wong, EHF
Rahmoune, H
Bahn, Sabine
Source :
Wesseling , H , Guest , PC , Lee , CM , Wong , EHF , Rahmoune , H & Bahn , S 2014 , ' Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders ' , Molecular Autism , vol. 5 .
Publication Year :
2014

Abstract

Background: Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1(neo-/-)) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods: Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1(neo-/-) mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results: Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1(neo-/-) mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MSE profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found on

Details

Database :
OAIster
Journal :
Wesseling , H , Guest , PC , Lee , CM , Wong , EHF , Rahmoune , H & Bahn , S 2014 , ' Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders ' , Molecular Autism , vol. 5 .
Notes :
application/pdf, und
Publication Type :
Electronic Resource
Accession number :
edsoai.on1313618127
Document Type :
Electronic Resource