Back to Search
Start Over
Hidden stores of organic matter in northern lake ice : Selective retention of terrestrial particles, phytoplankton and labile carbon
- Publication Year :
- 2021
-
Abstract
- Around 50% of the world's lakes freeze seasonally, but the duration of ice-cover is shortening each year and this is likely to have broad limnological consequences. We sampled freshwater ice and the underlying water in 19 boreal and polar lakes to evaluate whether lake ice contains an inoculum of algae, nutrients, and carbon that may contribute to lake ecosystem productivity. Boreal and Arctic lakes differed in ice duration (6 vs. >10 months), thickness (70 vs. 190 cm), and quality (predominantly snow ice vs. black ice), but in all lakes, there were consistent differences in biological and biogeochemical composition between ice and water. Particulate fractions were often more retained while most dissolved compounds were excluded from the ice; for example, the ice had more terrestrial particulate carbon, measured as fatty acid biomarkers (averages of 1.1 vs. 0.3 µg L−1) but lower dissolved organic carbon (2.2 vs. 5.7 mg C L−1) and inorganic phosphorus concentrations (4.0 vs. 7.5 µg C L−1) than the underlying water. The boreal ice further had three times higher chlorophyll-a, than the water (0.9 vs. 0.3 µg L−1). Of the dissolved fractions, the contribution of protein-like compounds was higher in the ice, and this in all lakes. These labile compounds would become available to planktonic microbes when the ice melts. Our results show that freshwater ice has an underestimated role in storage and transformation in the biogeochemical carbon cycle of ice-covered lake ecosystems.
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1313478426
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1029.2020JG006233