Back to Search
Start Over
Doubling the mobility of InAs/InGaAs selective area grown nanowires
- Publication Year :
- 2022
-
Abstract
- Selective area growth (SAG) of nanowires and networks promise a route toward scalable electronics, photonics, and quantum devices based on III-V semiconductor materials. The potential of high-mobility SAG nanowires however is not yet fully realised, since interfacial roughness, misfit dislocations at the nanowire/substrate interface and nonuniform composition due to material intermixing all scatter electrons. Here, we explore SAG of highly lattice-mismatched InAs nanowires on insulating GaAs(001) substrates and address these key challenges. Atomically smooth nanowire/substrate interfaces are achieved with the use of atomic hydrogen (a-H) as an alternative to conventional thermal annealing for the native oxide removal. The problem of high lattice mismatch is addressed through an InxGa1-xAs buffer layer introduced between the InAs transport channel and the GaAs substrate. The Ga-In material intermixing observed in both the buffer layer and the channel is inhibited via careful tuning of the growth temperature. Performing scanning transmission electron microscopy and x-ray diffraction analysis along with low-temperature transport measurements we show that optimized In-rich buffer layers promote high-quality InAs transport channels with the field-effect electron mobility over 10 000 cm2 V-1 s-1. This is twice as high as for nonoptimized samples and among the highest reported for InAs selective area grown nanostructures.
Details
- Database :
- OAIster
- Notes :
- ELETTRONICO, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1313115520
- Document Type :
- Electronic Resource