Back to Search Start Over

Investigating Aerodynamic Coefficients and Stability Derivatives for Truss-Braced Wing Aircraft Using OpenVSP

Authors :
Sarode, Varun Sunil
Sarode, Varun Sunil
Publication Year :
2022

Abstract

As the necessity of sustainable mobility rises, the demand to reduce the environmental impact of transporting mediums increases. The SUGAR Truss-Braced Wing (TBW) aircraft is a venture of Boeing, NASA and Virginia Tech for the N+3 generation of aircraft. These high-aspect-ratio aircraft are being designed with the aim to improve the structural and aerodynamic performance by implementing advanced technologies. Aerodynamics is a major factor influencing the performance of the aircraft, affecting the fuel consumption and emissions, especially due to drag. The multidisciplinary design optimization architecture for truss-braced-wing aircraft is dedicated to generate configurations with low fuel burn, maximum weight carrying capabilities and aircraft stability for long and medium range missions. The incorporation of flight dynamics at the conceptual design stage offers enhanced aerodynamic performance and wing flexibility for the aircraft. A robust flight dynamic system would need a detailed aerodynamic analysis of the aircraft with the focus on aeroelasticity. In this thesis, various aerodynamic coefficients and stability derivatives are investigated by applying Vortex-Lattice Method using OpenVSP, an open-source platform. The variation in aerodynamic parameters with changes in configurations and flow conditions are discussed as well. OpenVSP allows for study of these results with low computational expense. This will aid in efficient aerodynamic design and lay basis for flight dynamics analysis and its inclusion in the Multidisciplinary Design Analysis and Optimization (MDAO) framework.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1312716738
Document Type :
Electronic Resource