Back to Search Start Over

The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections

Authors :
Barcelona Supercomputing Center
Cos, Josep
Doblas-Reyes, Francisco
Jury, Martin
Marcos, Raül
Bretonnière, Pierre-Antoine
Samsó, Margarida
Barcelona Supercomputing Center
Cos, Josep
Doblas-Reyes, Francisco
Jury, Martin
Marcos, Raül
Bretonnière, Pierre-Antoine
Samsó, Margarida
Publication Year :
2022

Abstract

The enhanced warming trend and precipitation decline in the Mediterranean region make it a climate change hotspot. We compare projections of multiple Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) historical and future scenario simulations to quantify the impacts of the already changing climate in the region. In particular, we investigate changes in temperature and precipitation during the 21st century following scenarios RCP2.6, RCP4.5 and RCP8.5 for CMIP5 and SSP1-2.6, SSP2-4.5 and SSP5-8.5 from CMIP6, as well as for the HighResMIP high-resolution experiments. A model weighting scheme is applied to obtain constrained estimates of projected changes, which accounts for historical model performance and inter-independence in the multi-model ensembles, using an observational ensemble as reference. Results indicate a robust and significant warming over the Mediterranean region during the 21st century over all seasons, ensembles and experiments. The temperature changes vary between CMIPs, CMIP6 being the ensemble that projects a stronger warming. The Mediterranean amplified warming with respect to the global mean is mainly found during summer. The projected Mediterranean warming during the summer season can span from 1.83 to 8.49 ∘C in CMIP6 and 1.22 to 6.63 ∘C in CMIP5 considering three different scenarios and the 50 % of inter-model spread by the end of the century. Contrarily to temperature projections, precipitation changes show greater uncertainties and spatial heterogeneity. However, a robust and significant precipitation decline is projected over large parts of the region during summer by the end of the century and for the high emission scenario (−49 % to −16 % in CMIP6 and −47 % to −22 % in CMIP5). While there is less disagreement in projected precipitation than in temperature between CMIP5 and CMIP6, the latter shows larger precipitation declines in some regions. Results obtained from the model weighting scheme indicate larger warming<br />The work in this paper was partly supported by the European Commission H2020 project EUCP (grant no. 776613).<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
20 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1311972766
Document Type :
Electronic Resource