Back to Search Start Over

Soil moisture retrieval using the FMPL-2/FSSCat GNSS-R and microwave radiometry data

Authors :
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
Muñoz Martin, Joan Francesc
Llaveria Godoy, David
Herbert, Christoph Josef
Pablos Hernández, Miriam
Camps Carmona, Adriano José
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
Muñoz Martin, Joan Francesc
Llaveria Godoy, David
Herbert, Christoph Josef
Pablos Hernández, Miriam
Camps Carmona, Adriano José
Publication Year :
2021

Abstract

This work presents the first scientific results over land from the Flexible Microwave Payload -2 (FMPL-2), onboard the FSSCat mission. FMPL-2 is composed of an L-band microwave radiometer and a Global Navigation Satellite System - Reflectometer (GNSS-R). Two separate ANNs models are trained using the first three months of collected data of both observations, with the objective to retrieve global soil moisture maps. The first network addresses the coarsely-resolved FMPL-2 antenna footprint in a downscaling approach. Predicted values resulted in good agreement with those obtain from the SMAP mission, with an error smaller than 9.6%, and a bias smaller than 0.001 m 3 /m 3 . The second network is implemented to estimate soil moisture exclusively on GNSS-R data. In this second case, the combination of multiple GNSS-R measurements in a single track allows to retrieve soil moisture data with an error standard deviation with respect to SMAP lower than 0.056 m 3 /m 3 , with a bias smaller than 0.0007 m 3 /m 3 .<br />This work was supported by 2017 ESA S3 challenge and Copernicus Masters overall winner award (“FSSCat” project). This work has been (partially) sponsored by project SPOT: Sensing with Pioneering Opportunistic Techniques grant RTI2018-099008-B-C21 / AEI / 10.13039/501100011033, and by the Unidad de Excelencia Maria de Maeztu MDM2016-0600, and by the Spanish Ministry of Science and Innovation project ESP2017-89463-C3, the Centro de Excelencia Severo Ochoa CEX2019-000928-S and the CSIC Plataforma Tematica Interdisciplinar de Teledetección (PTI-Teledetect).<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
4 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1311972084
Document Type :
Electronic Resource