Back to Search Start Over

Molecular characterization of Campylobacter spp. recovered from beef, chicken, lamb and pork products at retail in Australia

Authors :
Wallace, Rhiannon
Bulach, Dieter
Jennison, Amy V.
Valcanis, Mary
McLure, Angus
Smith, James J
Graham, Trudy
SAPUTRA, THEMY
Firestone, Simon
SYMES, SALLY
Waters, Natasha
STYLIANOPOULOS, ANASTASIA
Kirk, Martyn
Glass, Katie
Wallace, Rhiannon
Bulach, Dieter
Jennison, Amy V.
Valcanis, Mary
McLure, Angus
Smith, James J
Graham, Trudy
SAPUTRA, THEMY
Firestone, Simon
SYMES, SALLY
Waters, Natasha
STYLIANOPOULOS, ANASTASIA
Kirk, Martyn
Glass, Katie
Source :
PLOS ONE (Public Library of Science)
Publication Year :
2020

Abstract

Australian rates of campylobacteriosis are among the highest in developed countries, yet only limited work has been done to characterize Campylobacter spp. in Australian retail products. We performed whole genome sequencing (WGS) on 331 C. coli and 285 C. jejuni from retail chicken meat, as well as beef, chicken, lamb and pork offal (organs). Campylobacter isolates were highly diverse, with 113 sequence types (STs) including 38 novel STs, identified from 616 isolates. Genomic analysis suggests very low levels (2.3-15.3%) of resistance to aminoglycoside, beta-lactam, fluoroquinolone, macrolide and tetracycline antibiotics. A majority (>90%) of isolates (52/56) possessing the fluoroquinolone resistance-associated T86I mutation in the gyrA gene belonged to ST860, ST2083 or ST7323. The 44 pork offal isolates were highly diverse, representing 33 STs (11 novel STs) and harboured genes associated with resistance to aminoglycosides, lincosamides and macrolides not generally found in isolates from other sources. Prevalence of multidrug resistant genotypes was very low (<5%), but ten-fold higher in C. coli than C. jejuni. This study highlights that Campylobacter spp. from retail products in Australia are highly genotypically diverse and important differences in antimicrobial resistance exist between Campylobacter species and animal sources.

Details

Database :
OAIster
Journal :
PLOS ONE (Public Library of Science)
Notes :
en_AU
Publication Type :
Electronic Resource
Accession number :
edsoai.on1310100033
Document Type :
Electronic Resource