Back to Search Start Over

Interpretable Machine Learning of Chemical Bonding at Solid Surfaces

Authors :
Omidvar, Noushin
Pillai, Hemanth Somarajan
Wang, Shih-Han
Mou, Tianyou
Wang, Siwen
Athawale, Andy
Achenie, Luke E. K.
Xin, Hongliang
Omidvar, Noushin
Pillai, Hemanth Somarajan
Wang, Shih-Han
Mou, Tianyou
Wang, Siwen
Athawale, Andy
Achenie, Luke E. K.
Xin, Hongliang
Publication Year :
2021

Abstract

Understanding the nature of chemical bonding and its variation in strength across physically tunable factors is important for the development of novel catalytic materials. One way to speed up this process is to employ machine learning (ML) algorithms with online data repositories curated from high-throughput experiments or quantum-chemical simulations. Despite the reasonable predictive performance of ML models for predicting reactivity properties of solid surfaces, the ever-growing complexity of modern algorithms, e.g., deep learning, makes them black boxes with little to no explanation. In this Perspective, we discuss recent advances of interpretable ML for opening up these black boxes from the standpoints of feature engineering, algorithm development, and post hoc analysis. We underline the pivotal role of interpretability as the foundation of next-generation ML algorithms and emerging AI platforms for driving discoveries across scientific disciplines.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1309069648
Document Type :
Electronic Resource