Back to Search
Start Over
Assessment of left ventricular diastolic function by three-dimensional transthoracic echocardiography
- Publication Year :
- 2020
-
Abstract
- Doppler echocardiography assessment of left ventricular (LV) filling pressures at rest and during exercise is the most widely used imaging technique to assess LV diastolic function in clinical practice. However, a sizable number of patients evaluated for suspected LV diastolic function show an inconsistency between the various parameters included in the flowchart recommended by current Doppler echocardiography guidelines and results in an undetermined LV diastolic function. Current three-dimensional echocardiography technology allows obtaining accurate measurements of the left atrial volumes and functions that have been shown to improve the diagnostic accuracy and prognostic value of the algorithms recommended for assessing both LV diastolic dysfunction and heart failure with preserved ejection fraction. Moreover, current software packages used to quantify LV size and function provide also volume-time curves showing the dynamic LV volume change throughout the cardiac cycle. Examining the diastolic part of these curves allows the measurement of several indices of LV filling that have been reported to be useful to differentiate patients with normal LV diastolic function from patients with different degrees of diastolic dysfunction. Finally, several software packages allow to obtain also myocardial deformation parameters from the three-dimensional datasets of both the left atrium and the LV providing additional functional parameters that may be useful to improve the diagnostic yield of three-dimensional echocardiography for the LV diastolic dysfunction. This review summarizes the current applications of three-dimensional echocardiography to assess LV diastolic function.
Details
- Database :
- OAIster
- Notes :
- ELETTRONICO, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1308934318
- Document Type :
- Electronic Resource