Back to Search Start Over

Lung stress and strain during mechanical ventilation : any safe threshold?

Authors :
Protti, A
Cressoni Mainoni, M
Santini, A
Langer, T
Mietto, C
Febres, D
Chierichetti, M
Coppola, S
Conte, G
Gatti, S
Leopardi, O
Masson, S
Lombardi, L
Lazzerini, M
Rampoldi, E
Cadringher, P
Gattinoni, L
Cressoni Mainoni, MT
Protti, A
Cressoni Mainoni, M
Santini, A
Langer, T
Mietto, C
Febres, D
Chierichetti, M
Coppola, S
Conte, G
Gatti, S
Leopardi, O
Masson, S
Lombardi, L
Lazzerini, M
Rampoldi, E
Cadringher, P
Gattinoni, L
Cressoni Mainoni, MT
Publication Year :
2011

Abstract

RATIONALE: Unphysiologic strain (the ratio between tidal volume and functional residual capacity) and stress (the transpulmonary pressure) can cause ventilator-induced lung damage. OBJECTIVES: To identify a strain-stress threshold (if any) above which ventilator-induced lung damage can occur. METHODS: Twenty-nine healthy pigs were mechanically ventilated for 54 hours with a tidal volume producing a strain between 0.45 and 3.30. Ventilator-induced lung damage was defined as net increase in lung weight. MEASUREMENTS AND MAIN RESULTS: Initial lung weight and functional residual capacity were measured with computed tomography. Final lung weight was measured using a balance. After setting tidal volume, data collection included respiratory system mechanics, gas exchange and hemodynamics (every 6 h); cytokine levels in serum (every 12 h) and bronchoalveolar lavage fluid (end of the experiment); and blood laboratory examination (start and end of the experiment). Two clusters of animals could be clearly identified: animals that increased their lung weight (n = 14) and those that did not (n = 15). Tidal volume was 38 ± 9 ml/kg in the former and 22 ± 8 ml/kg in the latter group, corresponding to a strain of 2.16 ± 0.58 and 1.29 ± 0.57 and a stress of 13 ± 5 and 8 ± 3 cm H(2)O, respectively. Lung weight gain was associated with deterioration in respiratory system mechanics, gas exchange, and hemodynamics, pulmonary and systemic inflammation and multiple organ dysfunction. CONCLUSIONS: In healthy pigs, ventilator-induced lung damage develops only when a strain greater than 1.5-2 is reached or overcome. Because of differences in intrinsic lung properties, caution is warranted in translating these findings to humans

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1308930943
Document Type :
Electronic Resource