Back to Search
Start Over
First principles simulations of phase change materials for data storage
- Publication Year :
- 2015
-
Abstract
- open<br />Phase change materials based on chalcogenide alloys are of great technological importance because of their use in optical data storage devices (DVDs) and electronic non-volatile memories of new concept, the Phase Change Memory cell (PCM). These applications rely on a fast (50 ns) and reversible change between the crystalline and the amorphous phases upon heating. The two phases correspond to the two states of the memory that can be discriminated thanks to a large difference in their optical and electronic properties. Although Ge2Sb2Te5 (GST) is the compound presently used as active layer in PCMs, alternative materials with a higher crystallization temperature are under scrutiny in order to increase the thermal stability of the PCM devices. In this respect, we analysed, by means of ab-initio molecular dynamics simulations, different high crystallization temperature alloys with composition In3Sb1Te2, In13Sb11Te3 and Ga4Sb6Te3, which have been experimentally proposed as substitute of GST. However, the structural properties and the microscopical reason of the high thermal stability of the amorphous phases of these compounds is still unclear. We, thus, generated models of the amorphous phase of few hundreds of atoms by quenching from the melt in few hundreds of ps aiming at finding out a relation between the structural properties of the amorphous phase and the high crystallization temperature of these alloys. The topology of our amorphous models turned out to be mostly tetrahedral which differs from the octahedral-like geometry of the crystalline phases. The presence of tetrahedral structures in the amorphous which are absent in the crystalline phase, probably hinders the crystallization process resulting in a higher crystallization temperature with respect to GST which display a mostly octahedral-like structures in both amorphous and the crystalline phase. In the second part of this work we addressed the issue of the resistance drift phenomenon, which consists of an inc<br />I materiali a cambiamento di fase sono calcogenuri a base di tellurio di notevole interesse tecnologico per la realizzazione di memorie ottiche (DVD) e di memorie elettroniche non volatili di nuova concezione, le memorie a cambiamento di fase o PCM. Questi dispositivi si basano su una veloce (50 ns) e reversibile transizione di fase amorfo-cristallo indotta per riscaldamento. Le due fasi corrispondono ai due stati di memoria che possono essere distinti grazie alla grande differenza tra le proprietà ottiche ed elettroniche dell'amorfo e quelle del cristallo. Nonostante il Ge2Sb2Te5 (GST) sia il materiale attualmente usato nelle PCM, si stanno studiando nuovi materiali con una temperatura di cristallizzazione più alta per aumentare la stabilità termica delle PCM. A questo proposito in questa tesi sono state studiate, attraverso simulazioni di dinamica molecolare ab-initio, diverse leghe ad alta temperatura di cristallizzazione con composizione In3Sb1Te2, In13Sb11Te3 e Ga4Sb6Te3. Queste leghe sono state studiate sperimentalmente e proposte come sostituti del GST, ma le proprietà strutturali e l'origine microscopica dell'elevata temperatura di cristallizzazione della fase amorfa di questi composti non è ancora del tutto chiara. Sono stati, quindi, generati modelli di qualche centinaio di atomi della fase amorfa raffreddando dal liquido in centinaia di ps allo scopo di trovare una relazione tra la struttura dell'amorfo e l'alta temperatura di cristallizzazione di queste leghe. La topologia di legame dei modelli amorfi risulta principalmente tetraedrica, molto diversa dalla geometria della fase cristallina che presenta invece intorni ottaedrici. La presenza di strutture tetraedriche nell'amorfo, assenti invece nella fase cristallina, può quindi costituire un ostacolo alla cristallizzazione con l'effetto di innalzare la temperatura di cristallizzazione rispetto al GST che presenta una geometria di legame prevalentemente ottaedrica sia nell'amorfo che nel cristallo. Nella s<br />No<br />open<br />Gabardi<br />Gabardi, S
Details
- Database :
- OAIster
- Notes :
- 27, 2013/2014, application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1308908531
- Document Type :
- Electronic Resource