Back to Search Start Over

Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center

Authors :
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
AGENCIA ESTATAL DE INVESTIGACION
European Regional Development Fund
National Natural Science Foundation of China
National Key Research and Development Program, China
Wang, Jia
Li, Xiaoping
Ruiz García, Rubén
Xu, Hanchuan
Chu, Dianhui
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
AGENCIA ESTATAL DE INVESTIGACION
European Regional Development Fund
National Natural Science Foundation of China
National Key Research and Development Program, China
Wang, Jia
Li, Xiaoping
Ruiz García, Rubén
Xu, Hanchuan
Chu, Dianhui
Publication Year :
2020

Abstract

[EN] Total profit is one of the most important factors to be considered from the perspective of resource providers. In this paper, an original MapReduce workflow scheduling with deadline and data locality is proposed to maximize total profit of resource providers. A new workflow conversion based on dynamic programming and ChainMap/ChainReduce is designed to decrease transmission times among MapReduce jobs of workflows. A new deadline division considering execution time, float time and job level is proposed to obtain better deadlines of MapReduce jobs in workflows. With the adapted replica strategy in MapReduce workflow, a new task scheduling is proposed to improve data locality which assigns tasks to servers with the earliest completion time in order to ensure resource providers obtain more profit. Experimental results show that the proposed heuristic results in larger total profit than other adopted algorithms.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1308860804
Document Type :
Electronic Resource