Back to Search Start Over

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

Authors :
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
European Commission
Generalitat Valenciana
U.S. Department of Energy
AGENCIA ESTATAL DE INVESTIGACION
MINISTERIO DE ECONOMIA Y EMPRESA
Ministerio de Economía y Competitividad
Ministerio de Ciencia, Innovación y Universidades
Fundação para a Ciência e a Tecnologia, Portugal
Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona
Kekic, M.
Adams, C.
Woodruff, K.
Renner, J.
Church, E.
Del Tutto, M.
Hernando Morata, J. A.
Gomez-Cadenas, J. J.
Álvarez-Puerta, Vicente
Arazi, L.
Arnquist, I.J.
Azevedo, C. D. R.
Bailey, K.
Ballester Merelo, Francisco José
Benlloch-Rodriguez, J. M.
Esteve Bosch, Raul
Herrero Bosch, Vicente
Mora Mas, Francisco José
Rodriguez-Samaniego, Javier
Toledo Alarcón, José Francisco
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
European Commission
Generalitat Valenciana
U.S. Department of Energy
AGENCIA ESTATAL DE INVESTIGACION
MINISTERIO DE ECONOMIA Y EMPRESA
Ministerio de Economía y Competitividad
Ministerio de Ciencia, Innovación y Universidades
Fundação para a Ciência e a Tecnologia, Portugal
Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona
Kekic, M.
Adams, C.
Woodruff, K.
Renner, J.
Church, E.
Del Tutto, M.
Hernando Morata, J. A.
Gomez-Cadenas, J. J.
Álvarez-Puerta, Vicente
Arazi, L.
Arnquist, I.J.
Azevedo, C. D. R.
Bailey, K.
Ballester Merelo, Francisco José
Benlloch-Rodriguez, J. M.
Esteve Bosch, Raul
Herrero Bosch, Vicente
Mora Mas, Francisco José
Rodriguez-Samaniego, Javier
Toledo Alarcón, José Francisco
Publication Year :
2021

Abstract

[EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1308853968
Document Type :
Electronic Resource