Back to Search Start Over

Soybean hull peroxidase immobilization on macroporous glycidyl methacrylates with different surface characteristics

Authors :
Prokopijević, Miloš
Prodanović, Olivera
Spasojević, Dragica
Stojanović, Željko
Radotić, Ksenija
Prodanović, Radivoje
Prokopijević, Miloš
Prodanović, Olivera
Spasojević, Dragica
Stojanović, Željko
Radotić, Ksenija
Prodanović, Radivoje
Source :
Bioprocess and Biosystems Engineering
Publication Year :
2014

Abstract

Soybean hull peroxidase (SHP, E.C. 1.11.1.7) was immobilized by a glutaraldehyde and periodate method onto series of macroporous copolymers of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA), poly(GMA-co-EGDMA) with various surface characteristics and pore size diameters ranging from 44 to 200 nm. Glutaraldehyde immobilization method and poly(GMA-co-EGDMA) named SGE 20/12 with pore sizes of 120 nm gave immobilized enzyme with highest specific activity of 25 U/g. Deactivation studies showed that immobilization increased stability of SHP and that surface characteristics of the used copolymer had a major influence on a stability of immobilized enzyme at high temperatures and in an organic solvent. The highest thermostability was obtained using the copolymer SGE 20/12 with pore size of 120 nm, while the highest stability in dioxane had SHP immobilized onto copolymer SGE 10/4 with pore size of 44 nm. Immobilized SHP showed a wider pH optimum as compared to the native enzyme especially at alkaline pH values and 3.2 times increased K (m) value for pyrogallol. After 6 cycles of repeated use in batch reactor, immobilized SHP retained 25 % of its original activity. Macroporous copolymers with different surface characteristics can be used for fine tuning of activity and stability of immobilized SHP to obtain a biocatalyst suitable for phenol oxidation or polymer synthesis in organic solvents.

Details

Database :
OAIster
Journal :
Bioprocess and Biosystems Engineering
Notes :
Bioprocess and Biosystems Engineering
Publication Type :
Electronic Resource
Accession number :
edsoai.on1305433820
Document Type :
Electronic Resource