Back to Search Start Over

Data Assimilation in Dynamic Environmental Pollution Modeling

Authors :
CWM
TUD
Zhang XF
van Eijkeren JCH
Heemink AW
CWM
TUD
Zhang XF
van Eijkeren JCH
Heemink AW
Publication Year :
1995

Abstract

RIVM rapport:Data-assimilatie methoden zijn bruikbare instrumenten ten behoeve van monitoring en diagnostiek van de milieukwaliteit. Bij deze methoden wordt informatie verkregen uit een milieukwaliteitsmeetnet geincorporeerd met een kwaliteitsmodel. Op deze manier wordt de in de algemene praktijk voorkomende schaarsheid aan metingen aangevuld door middel van modeluitkomsten (model-interpolatie). Anderzijds wordt voorkomen dat modeluitkomsten en metingen twee totaal verschillende diagnoses opleveren (model-calibratie). Dit rapport behandelt de mogelijke toepasbaarheid van twee zulke data-assimilatie methoden. Beide methoden worden met elkaar vergeleken. De eerste, een optimum interpolatietechniek bekend onder de naam Kriging, is eenvoudig en levert acceptabele nauwkeurigheid. Echter, ten opzichte van de andere techniek zijn meer metingen vereist. Bovendien gaat deze methode uit van aannamen met betrekking tot isotropie der data en de zogenaamde intrinsieke hypothese. De aanname met betrekking tot isotropie kan, maar dan ten koste van nog meer metingen, afgezwakt worden. De intrinsieke hypothese is essentieel. Aan beide aannamen wordt in de praktijk meestal matig of slecht voldaan. De aanname in de tweede methode, Kalman filter-techniek, met betrekking tot de data zijn realistischer. Het blijkt dat deze methode ook met veel minder metingen nog goed toepasbaar is. Daar tegenover staat dat het Kalman filter rekentechnisch (CPU-tijd en data-opslag) zware eisen stelt. Volgens Chandrasekhar kan men deze methode, onder zekere veronderstellingen met betrekking tot de modelstructuur, modificeren zodat hij, onder behoud van de typische filter eigenschap, rekentechnisch veel minder veeleisend is. Aan deze veronderstellingen wordt in de onderhavige problematiek voldaan.<br />Integration of data with environmental quality models is a key element for the estimation of dynamic spatial concentration patterns. Therefore, data assimilation methods are useful tools to assist in monitoring and controlling environmental quality. This report discusses the applicability of two such data assimilation methods for the estimation and prediction of air pollution. First, a computational effective time-invariant Kalman filter is developed by using a Chandrasekhar-type filter algorithm. Then, as an alternative, a more simple data assimilation method based on Kriging is proposed. The two data assimilation methods are compared in a number of experiments. It appeared that the Kriging approach is only valid if the isotropic and intrinsic hypothesis is satisfied. However, this assumption may not be realistic in many practical problems. In addition, it requires a relatively large number of measurements to produce reliable predictions. Kalman filtering provides a more accurate estimation and is more widely applicable. However, it suffers from computational burden. For real life applications in the next research phase, it is promising that a recently developed Chandrasekhar-type Kalman filter approach can be incorporated to improve computational effectiveness significantly.

Details

Database :
OAIster
Notes :
http://www.rivm.nl/bibliotheek/rapporten/421503006.html, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1298224281
Document Type :
Electronic Resource