Back to Search Start Over

Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder

Authors :
Schwarz, Emanuel
Doan, Nhat Trung
Pergola, Giulio
Westlye, Lars T.
Kaufmann, Tobias
Wolfers, Thomas
Brecheisen, Ralph
Quarto, Tiziana
Ing, Alex J.
Di Carlo, Pasquale
Gurholt, Tiril P.
Harms, Robbert L.
Noirhomme, Quentin
Moberget, Torgeir
Agartz, Ingrid
Andreassen, Ole A.
Bellani, Marcella
Bertolino, Alessandro
Blasi, Giuseppe
Brambilla, Paolo
Buitelaar, Jan K.
Cervenka, Simon
Flyckt, Lena
Frangou, Sophia
Franke, Barbara
Hall, Jeremy
Heslenfeld, Dirk J.
Kirsch, Peter
McIntosh, Andrew M.
Noethen, Markus M.
Papassotiropoulos, Andreas
de Quervain, Dominique J-F
Rietschel, Marcella
Schumann, Gunter
Tost, Heike
Witt, Stephanie H.
Zink, Mathias
Meyer-Lindenberg, Andreas
Bettella, Francesco
Brandt, Christine L.
Clarke, Toni-Kim
Coynel, David
Degenhardt, Franziska
Djurovic, Srdjan
Eisenacher, Sarah
Fastenrath, Matthias
Fatouros-Bergman, Helena
Forstner, Andreas J.
Frank, Josef
Gambi, Francesco
Gelao, Barbara
Geschwind, Leo
Di Giannantonio, Massimo
Di Giorgio, Annabella
Hartman, Catharina A.
Heilmann-Heimbach, Stefanie
Herms, Stefan
Hoekstra, Pieter J.
Hoffmann, Per
Hoogman, Martine
Jonsson, Erik G.
Loos, Eva
Maggioni, Eleonora
Oosterlaan, Jaap
Papalino, Marco
Rampino, Antonio
Romaniuk, Liana
Selvaggi, Pierluigi
Sepede, Gianna
Sonderby, Ida E.
Spalek, Klara
Sussmann, Jessika E.
Thompson, Paul M.
Vasquez, Alejandro Arias
Vogler, Christian
Whalley, Heather
Farde, L.
Flyckt, L.
Engberg, G.
Erhardt, S.
Fatouros-Bergman, H.
Cervenka, S.
Schwieler, L.
Agartz, I
Collste, K.
Victorsson, P.
Malmqvist, A.
Hedberg, M.
Orhan, F.
Schwarz, Emanuel
Doan, Nhat Trung
Pergola, Giulio
Westlye, Lars T.
Kaufmann, Tobias
Wolfers, Thomas
Brecheisen, Ralph
Quarto, Tiziana
Ing, Alex J.
Di Carlo, Pasquale
Gurholt, Tiril P.
Harms, Robbert L.
Noirhomme, Quentin
Moberget, Torgeir
Agartz, Ingrid
Andreassen, Ole A.
Bellani, Marcella
Bertolino, Alessandro
Blasi, Giuseppe
Brambilla, Paolo
Buitelaar, Jan K.
Cervenka, Simon
Flyckt, Lena
Frangou, Sophia
Franke, Barbara
Hall, Jeremy
Heslenfeld, Dirk J.
Kirsch, Peter
McIntosh, Andrew M.
Noethen, Markus M.
Papassotiropoulos, Andreas
de Quervain, Dominique J-F
Rietschel, Marcella
Schumann, Gunter
Tost, Heike
Witt, Stephanie H.
Zink, Mathias
Meyer-Lindenberg, Andreas
Bettella, Francesco
Brandt, Christine L.
Clarke, Toni-Kim
Coynel, David
Degenhardt, Franziska
Djurovic, Srdjan
Eisenacher, Sarah
Fastenrath, Matthias
Fatouros-Bergman, Helena
Forstner, Andreas J.
Frank, Josef
Gambi, Francesco
Gelao, Barbara
Geschwind, Leo
Di Giannantonio, Massimo
Di Giorgio, Annabella
Hartman, Catharina A.
Heilmann-Heimbach, Stefanie
Herms, Stefan
Hoekstra, Pieter J.
Hoffmann, Per
Hoogman, Martine
Jonsson, Erik G.
Loos, Eva
Maggioni, Eleonora
Oosterlaan, Jaap
Papalino, Marco
Rampino, Antonio
Romaniuk, Liana
Selvaggi, Pierluigi
Sepede, Gianna
Sonderby, Ida E.
Spalek, Klara
Sussmann, Jessika E.
Thompson, Paul M.
Vasquez, Alejandro Arias
Vogler, Christian
Whalley, Heather
Farde, L.
Flyckt, L.
Engberg, G.
Erhardt, S.
Fatouros-Bergman, H.
Cervenka, S.
Schwieler, L.
Agartz, I
Collste, K.
Victorsson, P.
Malmqvist, A.
Hedberg, M.
Orhan, F.
Publication Year :
2019

Abstract

Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1293948276
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1038.s41398-018-0225-4