Back to Search Start Over

Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana

Authors :
Mitchell, Sarah N.
Stevenson, Bradley
Muller, Pie
Wilding, Craig S.
Egyir-Yawson, Alexander
Field, Stuart G.
Hemingway, Janet
Paine, Mark J. I.
Ranson, Hilary
Donnelly, Martin James
Mitchell, Sarah N.
Stevenson, Bradley
Muller, Pie
Wilding, Craig S.
Egyir-Yawson, Alexander
Field, Stuart G.
Hemingway, Janet
Paine, Mark J. I.
Ranson, Hilary
Donnelly, Martin James
Source :
PNAS - Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2012

Abstract

In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a uniquewhole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.

Details

Database :
OAIster
Journal :
PNAS - Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Electronic Resource
Accession number :
edsoai.on1291789307
Document Type :
Electronic Resource