Back to Search Start Over

A Framework for Evolving Spiking Neural P Systems with Rules on Synapses

Authors :
Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla. TIC193 : Computación Natural
Ministerio de Economia, Industria y Competitividad (MINECO). España
Moredo, Celine Anne A.
Supelana, Ryan Chester J.
Cailipan, Dionne Peter
Cabarle, Francis George C.
Cruz, Ren Tristan de la
Adorna, Henry N.
Zeng, Xiangxiang
Martínez del Amor, Miguel Ángel
Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla. TIC193 : Computación Natural
Ministerio de Economia, Industria y Competitividad (MINECO). España
Moredo, Celine Anne A.
Supelana, Ryan Chester J.
Cailipan, Dionne Peter
Cabarle, Francis George C.
Cruz, Ren Tristan de la
Adorna, Henry N.
Zeng, Xiangxiang
Martínez del Amor, Miguel Ángel
Publication Year :
2019

Abstract

In this paper, we present a genetic algorithm framework for evolving Spiking Neural P Systems with rules on synapses (RSSNP systems, for short). Starting with an initial RSSNP system, we use the genetic algorithm framework to obtain a derived RSSNP system with fewer resources (fewer and simpler rules, fewer synapses, less initial spikes) that can still produce the expected output spike trains. Different methods in the selection of parents and in the calculation of fitness are incorporated. We also try the framework on 5 RSSNP systems that compute bitwise AND, OR, NOT, ADD, and SUB respectively to gather data on how the framework behaves. Lastly, we discuss the asymptotic complexity of the algorithm and its effectiveness in generating fitter RSSNP systems based on which methods were used.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1290385964
Document Type :
Electronic Resource