Back to Search Start Over

Event-Driven Configurable Module with Refractory Mechanism for ConvNets on FPGA

Authors :
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo
European Union (UE)
Ministerio de Ciencia, Innovación y Universidades (MICINN). España
Junta de Andalucía
Camuñas Mesa, Luis Alejandro
Domínguez Cordero, Yaisel L.
Serrano Gotarredona, María Teresa
Linares Barranco, Bernabé
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo
European Union (UE)
Ministerio de Ciencia, Innovación y Universidades (MICINN). España
Junta de Andalucía
Camuñas Mesa, Luis Alejandro
Domínguez Cordero, Yaisel L.
Serrano Gotarredona, María Teresa
Linares Barranco, Bernabé
Publication Year :
2018

Abstract

We have developed a fully configurable event-driven convolutional module with refractory period mechanism that can be used to implement arbitrary Convolutional Neural Networks (ConvNets) on FPGAs following a 2D array structure. Using this module, we have implemented in a Spartan6 FPGA a 4-layer ConvNet with 22 convolutional modules trained for poker card symbol recognition. It has been tested with a stimulus where 40 poker cards were observed by a Dynamic Vision Sensor (DVS) in 1s time. A traffic control mechanism is implemented to downsample high speed input stimuli while keeping spatio-temporal correlation. For slow stimulus play back, a 96% recognition rate is achieved with a power consumption of 0.85mW. At maximum play back speed, the recognition rate is still above 63% when less than 20% of the input events are processed.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1290385175
Document Type :
Electronic Resource