Back to Search Start Over

A Study of Archiving Strategies in Multi-Objective PSO for Molecular Docking

Authors :
Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Ministerio de Ciencia e Innovación (MICIN). España
Junta de Andalucía
European Cooperation in Science and Technology (COST)
García Nieto, José Manuel
López Camacho, Esteban
García Godoy, María Jesús
Nebro, Antonio J.
Durillo, Juan J.
Aldana Montes, José F.
Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Ministerio de Ciencia e Innovación (MICIN). España
Junta de Andalucía
European Cooperation in Science and Technology (COST)
García Nieto, José Manuel
López Camacho, Esteban
García Godoy, María Jesús
Nebro, Antonio J.
Durillo, Juan J.
Aldana Montes, José F.
Publication Year :
2016

Abstract

Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) di erence in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on di erent archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1290382388
Document Type :
Electronic Resource