Back to Search Start Over

Scene Context Classification with Event-Driven Spiking Deep Neural Networks

Authors :
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
European Union (UE)
Ministerio de Economía y Competitividad (MINECO). España
Negri, Pablo
Soto, Miguel
Linares Barranco, Bernabé
Serrano Gotarredona, María Teresa
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
European Union (UE)
Ministerio de Economía y Competitividad (MINECO). España
Negri, Pablo
Soto, Miguel
Linares Barranco, Bernabé
Serrano Gotarredona, María Teresa
Publication Year :
2018

Abstract

Event-Driven computation is attracting growing attention among researchers for several reasons. On one hand, the availability of new bio-inspired retina-like vision sensors that provide spiking outputs, like the Dynamic Vision Sensor (DVS) make it possible to demonstrate energy efficient and highspeed complex vision tasks. On the other hand, the emergence of abundant new nanoscale devices that operate as tunable two-terminal resistive elements, which when operated through dynamic pulsing techniques emulate learning and processing in the brain, promise an explosion of highly compact energy efficient neuromorphic event-driven applications. In this paper we focus for the first time on a high-level cognitive task, namely scene context classification, performed by event-driven computations and using real sensory data from a DVS camera.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1290375475
Document Type :
Electronic Resource