Back to Search Start Over

Thermoelectric Properties of Poly(3-hexylthiophene) (P3HT) Doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by Vapor-Phase Infiltration

Authors :
Lim, E
Lim, E
Peterson, KA
Su, GM
Chabinyc, ML
Lim, E
Lim, E
Peterson, KA
Su, GM
Chabinyc, ML
Source :
Chemistry of Materials; vol 30, iss 3, 998-1010; 0897-4756
Publication Year :
2018

Abstract

Doping of thin films of semiconducting polymers provides control of their electrical conductivity and thermopower. The electrical conductivity of semiconducting polymers rises nonlinearly with the carrier concentration, and there is a lack of understanding of the detailed factors that lead to this behavior. We report a study of the morphological effects of doping on the electrical conductivity of poly(3-hexylthiophene) (P3HT) thin films doped with small molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Resonant soft X-ray scattering shows that the morphology of films of P3HT is not strongly changed by infiltration of F4TCNQ from the vapor phase. We show that the local ordering of P3HT, the texture and form factor of crystallites, and the long-range connectivity of crystalline domains contribute to the electrical conductivity in thin films. The thermopower of films of P3HT doped with F4TCNQ from the vapor phase is not strongly enhanced relative to films doped from solution, but the electrical conductivity is significantly higher, improving the thermoelectric power factor.

Details

Database :
OAIster
Journal :
Chemistry of Materials; vol 30, iss 3, 998-1010; 0897-4756
Notes :
application/pdf, Chemistry of Materials vol 30, iss 3, 998-1010 0897-4756
Publication Type :
Electronic Resource
Accession number :
edsoai.on1287325868
Document Type :
Electronic Resource