Back to Search Start Over

Butterfly factorization via randomized matrix-vector multiplications

Authors :
Liu, Y
Liu, Y
Xing, X
Guo, H
Michielssen, E
Ghysels, P
Li, XS
Liu, Y
Liu, Y
Xing, X
Guo, H
Michielssen, E
Ghysels, P
Li, XS
Source :
SIAM Journal on Scientific Computing; vol 43, iss 2, A883-A907; 1064-8275
Publication Year :
2021

Abstract

This paper presents an adaptive randomized algorithm for computing the butterfly factorization of an m × n matrix with m ≈ n provided that both the matrix and its transpose can be rapidly applied to arbitrary vectors. The resulting factorization is composed of O(log n) sparse factors, each containing O(n) nonzero entries. The factorization can be attained using O(n3/2 log n) computation and O(n log n) memory resources. The proposed algorithm can be implemented in parallel and can apply to matrices with strong or weak admissibility conditions arising from surface integral equation solvers as well as multi-frontal-based finite-difference, finite-element, or finite-volume solvers. A distributed-memory parallel implementation of the algorithm demonstrates excellent scaling behavior.

Details

Database :
OAIster
Journal :
SIAM Journal on Scientific Computing; vol 43, iss 2, A883-A907; 1064-8275
Notes :
application/pdf, SIAM Journal on Scientific Computing vol 43, iss 2, A883-A907 1064-8275
Publication Type :
Electronic Resource
Accession number :
edsoai.on1287293188
Document Type :
Electronic Resource