Back to Search
Start Over
Butterfly factorization via randomized matrix-vector multiplications
- Source :
- SIAM Journal on Scientific Computing; vol 43, iss 2, A883-A907; 1064-8275
- Publication Year :
- 2021
-
Abstract
- This paper presents an adaptive randomized algorithm for computing the butterfly factorization of an m × n matrix with m ≈ n provided that both the matrix and its transpose can be rapidly applied to arbitrary vectors. The resulting factorization is composed of O(log n) sparse factors, each containing O(n) nonzero entries. The factorization can be attained using O(n3/2 log n) computation and O(n log n) memory resources. The proposed algorithm can be implemented in parallel and can apply to matrices with strong or weak admissibility conditions arising from surface integral equation solvers as well as multi-frontal-based finite-difference, finite-element, or finite-volume solvers. A distributed-memory parallel implementation of the algorithm demonstrates excellent scaling behavior.
Details
- Database :
- OAIster
- Journal :
- SIAM Journal on Scientific Computing; vol 43, iss 2, A883-A907; 1064-8275
- Notes :
- application/pdf, SIAM Journal on Scientific Computing vol 43, iss 2, A883-A907 1064-8275
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1287293188
- Document Type :
- Electronic Resource