Back to Search
Start Over
Functional Expression of Two Unusual Acidic Peroxygenases from Candolleomyces aberdarensis in Yeasts by Adopting Evolved Secretion Mutations
- Publication Year :
- 2021
-
Abstract
- [EN] Fungal unspecific peroxygenases (UPOs) are emergent biocatalysts that perform highly selective C-H oxyfunctionalizations of organic compounds, yet their heterologous production at high levels is required for their practical use in synthetic chemistry. Here, we achieved functional expression in yeast of two new unusual acidic peroxygenases from Candolleomyces (Psathyrella) aberdarensis (PabUPO) and their production at large scale in bioreactor. Our strategy was based on adopting secretion mutations from Agrocybe aegerita UPO mutant −PaDa-I variant− designed by directed evolution for functional expression in yeast, which belongs to the same phylogenetic family as PabUPOs –long-type UPOs− and that shares 65% sequence identity. After replacing the native signal peptides by the evolved leader sequence from PaDa-I, we constructed and screened site-directed recombination mutant libraries yielding two recombinant PabUPOs with expression levels of 5.4 and 14.1 mg/L in S. cerevisiae. These variants were subsequently transferred to P. pastoris for overproduction in fed-batch bioreactor, boosting expression levels up to 290 mg/L with the highest volumetric activity achieved to date for a recombinant peroxygenase (60,000 U/L, with veratryl alcohol as substrate). With a broad pH activity profile, ranging from 2.0 to 9.0, these highly secreted, active and stable peroxygenases are promising tools for future engineering endeavors, as well as for their direct application in different industrial and environmental settings.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1286584457
- Document Type :
- Electronic Resource