Back to Search Start Over

EvryFlare. III. Temperature Evolution and Habitability Impacts of Dozens of Superflares Observed Simultaneously by Evryscope and TESS

Authors :
National Science Foundation (US)
Scialog
Ministerio de Economía y Competitividad (España)
European Commission
Howard, W. S.
Corbett, Hank
Law, N. M.
Ratzloff, J. K.
Galliher, Nathan
Glazier, Amy
González, R.
Soto, A.
Fors, Octavi
Ser, Daniel del
Haislip, Joshua B.
National Science Foundation (US)
Scialog
Ministerio de Economía y Competitividad (España)
European Commission
Howard, W. S.
Corbett, Hank
Law, N. M.
Ratzloff, J. K.
Galliher, Nathan
Glazier, Amy
González, R.
Soto, A.
Fors, Octavi
Ser, Daniel del
Haislip, Joshua B.
Publication Year :
2020

Abstract

Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable-zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has usually been approximated by a 9000 K blackbody. If superflares are hotter, then the UV emission may be 10 times higher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000 K. Only a handful of M-dwarf superflares have been recorded with multiwavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and Transiting Exoplanet Survey Satellite observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M dwarfs with published time-resolved blackbody evolution by ∼10×. We measure temperatures at 2 minutes cadence for 42 superflares from 27 K5-M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14,000 K depends on energy. We discover that 43% of the flares emit above 14,000 K, 23% emit above 20,000 K and 5% emit above 30,000 K. The largest and hottest flare briefly reached 42,000 K. Some do not reach 14,000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ∼120 W m-2 and up to 103 W m-2, 100-1000 times the time-averaged X-ray and UV flux from Proxima Cen.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286567457
Document Type :
Electronic Resource