Back to Search Start Over

Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment

Authors :
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Generalitat de Catalunya
Muñoz-Martín, Joan Francesc
Onrubia, Raul
Pascual, Daniel
Park, Hyuk
Pablos, Miriam
Camps, Adriano
Rüdiger, Christoph
Walker, Jeffrey
Monerris, A.
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Generalitat de Catalunya
Muñoz-Martín, Joan Francesc
Onrubia, Raul
Pascual, Daniel
Park, Hyuk
Pablos, Miriam
Camps, Adriano
Rüdiger, Christoph
Walker, Jeffrey
Monerris, A.
Publication Year :
2021

Abstract

Global Navigation Satellite System—Reflectometry (GNSS-R) has already proven its potential for retrieving a number of geophysical parameters, including soil moisture. However, single-pass GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two different data sets acquired with the Microwave Interferometer Reflectometer (MIR), an airborne-based dual-band (L1/E1 and L5/E5a), multiconstellation (GPS and Galileo) GNSS-R instrument with two 19-element antenna arrays with four electronically steered beams each. The instrument was flown twice over the OzNet soil moisture monitoring network in southern New South Wales (Australia): the first flight was performed after a long period without rain, and the second one just after a rain event. In this work, the impact of surface roughness and vegetation attenuation in the reflectivity of the GNSS-R signal is assessed at both L1 and L5 bands. The work analyzes the reflectivity at different integration times, and finally, an artificial neural network is used to retrieve soil moisture from the reflectivity values. The algorithm is trained and compared to a 20-m resolution downscaled soil moisture estimate derived from SMOS soil moisture, Sentinel-2 normalized difference vegetation index (NDVI) data, and ECMWF Land Surface Temperature

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286564347
Document Type :
Electronic Resource