Back to Search Start Over

Loss of HDAC11 accelerates skeletal muscle regeneration in mice

Authors :
Ministerio de Economía y Competitividad (España)
Agencia Estatal de Investigación (España)
Ministerio de Ciencia, Innovación y Universidades (España)
Generalitat de Catalunya
Junta de Castilla y León
European Commission
Núñez‐Álvarez, Yaiza
Hurtado, Erica
Muñoz, Mar
García-Tuñón, Ignacio
Rech, Gabriel E.
Pluvinet, Raquel
Sumoy, Lauro
Pendás, Alberto M.
Peinado, Miguel A.
Suelves, Mònica
Ministerio de Economía y Competitividad (España)
Agencia Estatal de Investigación (España)
Ministerio de Ciencia, Innovación y Universidades (España)
Generalitat de Catalunya
Junta de Castilla y León
European Commission
Núñez‐Álvarez, Yaiza
Hurtado, Erica
Muñoz, Mar
García-Tuñón, Ignacio
Rech, Gabriel E.
Pluvinet, Raquel
Sumoy, Lauro
Pendás, Alberto M.
Peinado, Miguel A.
Suelves, Mònica
Publication Year :
2021

Abstract

Histone deacetylase 11 (HDAC11) is the latest identified member of the histone deacetylase family of enzymes. It is highly expressed in brain, heart, testis, kidney, and skeletal muscle, although its role in these tissues is poorly understood. Here, we investigate for the first time the consequences of HDAC11 genetic impairment on skeletal muscle regeneration, a process principally dependent on its resident stem cells (satellite cells) in coordination with infiltrating immune cells and stromal cells. Our results show that HDAC11 is dispensable for adult muscle growth and establishment of the satellite cell population, while HDAC11 deficiency advances the regeneration process in response to muscle injury. This effect is not caused by differences in satellite cell activation or proliferation upon injury, but rather by an enhanced capacity of satellite cells to differentiate at early regeneration stages in the absence of HDAC11. Infiltrating HDAC11‐deficient macrophages could also contribute to this accelerated muscle regenerative process by prematurely producing high levels of IL‐10, a cytokine known to promote myoblast differentiation. Altogether, our results show that HDAC11 depletion advances skeletal muscle regeneration and this finding may have potential implications for designing new strategies for muscle pathologies coursing with chronic damage.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286557008
Document Type :
Electronic Resource