Back to Search Start Over

Updated design of the CMB polarization experiment satellite LiteBIRD

Authors :
World Premier International Research Center (Japan)
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology (Japan)
Agenzia Spaziale Italiana
Istituto Nazionale di Fisica Nucleare
Centre National D'Etudes Spatiales (France)
Centre National de la Recherche Scientifique (France)
Commissariat à l'Ènergie Atomique et aux Ènergies Alternatives (France)
European Space Agency
Canadian Space Agency
National Aeronautics and Space Administration (US)
Sugai, H.
Barreiro, R. Belén
Casas-Reinares, F. J.
Génova-Santos, R.
Herranz, D.
Martínez-González, Enrique
Rubiño-Martín, J. A.
Vielva, Patricio
World Premier International Research Center (Japan)
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology (Japan)
Agenzia Spaziale Italiana
Istituto Nazionale di Fisica Nucleare
Centre National D'Etudes Spatiales (France)
Centre National de la Recherche Scientifique (France)
Commissariat à l'Ènergie Atomique et aux Ènergies Alternatives (France)
European Space Agency
Canadian Space Agency
National Aeronautics and Space Administration (US)
Sugai, H.
Barreiro, R. Belén
Casas-Reinares, F. J.
Génova-Santos, R.
Herranz, D.
Martínez-González, Enrique
Rubiño-Martín, J. A.
Vielva, Patricio
Publication Year :
2020

Abstract

Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286556530
Document Type :
Electronic Resource