Back to Search Start Over

Galaxy classification: Deep learning on the OTELO and COSMOS databases

Authors :
Ministerio de Ciencia, Innovación y Universidades (España)
European Commission
Universidad Nacional Autónoma de México
Gobierno de Canarias
Ministry of Science and Technology (Ethiopia)
Ministerio de Economía y Competitividad (España)
Agencia Estatal de Investigación (España)
Carlsberg Foundation
Universidad de Cantabria
Diego, J. A. de
Nadolny, Jakub
Bongiovanni, Ángel
Cepa, Jordi
Pović, Mirjana
Pérez-García, Ana M.
Padilla Torres, Carmen P.
Lara-López, Maritza A.
Cerviño, Miguel
Pérez Martínez, Ricardo
Alfaro, Emilio J.
Castañeda, Héctor
Fernández Lorenzo, M.
Gallego, Jesús
González, José Jesús
González-Serrano, José Ignacio
Pintos-Castro, Irene
Sánchez-Portal, Miguel
Cedrés, Bernabé
González-Otero, Mauro
Heath Jones, D.
Bland-Hawthorn, J.
Ministerio de Ciencia, Innovación y Universidades (España)
European Commission
Universidad Nacional Autónoma de México
Gobierno de Canarias
Ministry of Science and Technology (Ethiopia)
Ministerio de Economía y Competitividad (España)
Agencia Estatal de Investigación (España)
Carlsberg Foundation
Universidad de Cantabria
Diego, J. A. de
Nadolny, Jakub
Bongiovanni, Ángel
Cepa, Jordi
Pović, Mirjana
Pérez-García, Ana M.
Padilla Torres, Carmen P.
Lara-López, Maritza A.
Cerviño, Miguel
Pérez Martínez, Ricardo
Alfaro, Emilio J.
Castañeda, Héctor
Fernández Lorenzo, M.
Gallego, Jesús
González, José Jesús
González-Serrano, José Ignacio
Pintos-Castro, Irene
Sánchez-Portal, Miguel
Cedrés, Bernabé
González-Otero, Mauro
Heath Jones, D.
Bland-Hawthorn, J.
Publication Year :
2020

Abstract

[Context]: The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution. [Aims]: Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases using optical and infrared photometry and available shape parameters: either the Sérsic index or the concentration index. Methods. We used three classification methods for the OTELO database: (1) u - r color separation, (2) linear discriminant analysis using u - r and a shape parameter classification, and (3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data. [Results]: The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the photometric bands used in each catalog. [Conclusions]: In this study we show that the use of deep neural networks is a robust method to mine the cataloged data.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286552575
Document Type :
Electronic Resource