Back to Search Start Over

Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins

Authors :
Robinson, A. H.
Callow, B.
Böttner, Christoph
Yilo, N.
Provenzano, G.
Falcon-Suarez, I. H.
Marin-Moreno, H.
Lichtschlag, A.
Bayrakci, G.
Gehrmann, R.
Parkes, L.
Roche, B.
Saleem, U.
Schramm, Bettina
Waage, M.
Lavayssiere, A.
Li , J.
Jedari-Eyvazi, F.
Sahoo, S.
Deusner, Christian
Kossel, Elke
Minshull, T. A.
Berndt, Christian
Bull, J. M.
Dean, M.
James, R. H.
Chapman, M.
Best, A. I.
Bünz, S.
Chen, B.
Connelly, D. P.
Elger, Judith
Haeckel, Matthias
Henstock, T. J.
Karstens, Jens
Macdonald, Calum
Matter, J. M.
North, L.
Reinardy, B.
Robinson, A. H.
Callow, B.
Böttner, Christoph
Yilo, N.
Provenzano, G.
Falcon-Suarez, I. H.
Marin-Moreno, H.
Lichtschlag, A.
Bayrakci, G.
Gehrmann, R.
Parkes, L.
Roche, B.
Saleem, U.
Schramm, Bettina
Waage, M.
Lavayssiere, A.
Li , J.
Jedari-Eyvazi, F.
Sahoo, S.
Deusner, Christian
Kossel, Elke
Minshull, T. A.
Berndt, Christian
Bull, J. M.
Dean, M.
James, R. H.
Chapman, M.
Best, A. I.
Bünz, S.
Chen, B.
Connelly, D. P.
Elger, Judith
Haeckel, Matthias
Henstock, T. J.
Karstens, Jens
Macdonald, Calum
Matter, J. M.
North, L.
Reinardy, B.
Publication Year :
2021

Abstract

Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. These fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner Pockmark Complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multifrequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286413680
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.ijggc.2020.103245