Back to Search
Start Over
Machine learned prediction of reaction template applicability for data-driven retrosynthetic predictions of energetic materials
- Source :
- Other repository
- Publication Year :
- 2021
-
Abstract
- State of the art computer-aided synthesis planning models are naturally biased toward commonly reported chemical reactions, thus reducing the usefulness of those models for the unusual chemistry relevant to shock physics. To address this problem, a neural network was trained to recognize reaction template applicability for small organic molecules to supplement the rare reaction examples of relevance to energetic materials. The training data for the neural network was generated by brute force determination of template subgraph matching for product molecules from a database of reactions in U.S. patent literature. This data generation strategy successfully augmented the information about template applicability for rare reaction mechanisms in the reaction database. The increased ability to recognize rare reaction templates was demonstrated for reaction templates of interest for energetic material synthesis such as heterocycle ring formation.
Details
- Database :
- OAIster
- Journal :
- Other repository
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1286404790
- Document Type :
- Electronic Resource