Back to Search Start Over

Field Intercomparison of Radiometer Measurements for Ocean Colour Validation

Authors :
Tilstone, Gavin
Dall’olmo, Giorgio
Hieronymi, Martin
Ruddick, Kevin
Beck, Matthew
Ligi, Martin
Costa, Maycira
D’alimonte, Davide
Vellucci, Vincenzo
Vansteenwegen, Dieter
Bracher, Astrid
Wiegmann, Sonja
Kuusk, Joel
Vabson, Viktor
Ansko, Ilmar
Vendt, Riho
Donlon, Craig
Casal, Tânia
Tilstone, Gavin
Dall’olmo, Giorgio
Hieronymi, Martin
Ruddick, Kevin
Beck, Matthew
Ligi, Martin
Costa, Maycira
D’alimonte, Davide
Vellucci, Vincenzo
Vansteenwegen, Dieter
Bracher, Astrid
Wiegmann, Sonja
Kuusk, Joel
Vabson, Viktor
Ansko, Ilmar
Vendt, Riho
Donlon, Craig
Casal, Tânia
Source :
Remote Sensing (2072-4292) (MDPI AG), 2020-05 , Vol. 12 , N. 10 , P. 1587 (50p.)
Publication Year :
2020

Abstract

A field intercomparison was conducted at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea, from 9 to 19 July 2018 to assess differences in the accuracy of in- and above-water radiometer measurements used for the validation of ocean colour products. Ten measurement systems were compared. Prior to the intercomparison, the absolute radiometric calibration of all sensors was carried out using the same standards and methods at the same reference laboratory. Measurements were performed under clear sky conditions, relatively low sun zenith angles, moderately low sea state and on the same deployment platform and frame (except in-water systems). The weighted average of five above-water measurements was used as baseline reference for comparisons. For downwelling irradiance (), there was generally good agreement between sensors with differences of <6% for most of the sensors over the spectral range 400 nm–665 nm. One sensor exhibited a systematic bias, of up to 11%, due to poor cosine response. For sky radiance () the spectrally averaged difference between optical systems was <2.5% with a root mean square error (RMS) <0.01 mWm−2 nm−1 sr−1. For total above-water upwelling radiance (), the difference was <3.5% with an RMS <0.009 mWm−2 nm−1 sr−1. For remote-sensing reflectance (), the differences between above-water TriOS RAMSES were <3.5% and <2.5% at 443 and 560 nm, respectively, and were <7.5% for some systems at 665 nm. Seabird HyperSAS sensors were on average within 3.5% at 443 nm, 1% at 560 nm, and 3% at 665 nm. The differences between the weighted mean of the above-water and in-water systems was <15.8% across visible bands. A sensitivity analysis showed that accounted for the largest fraction of the variance in , which suggests that minimizing the errors arising from this measurement is the most important variable in reducing the inter-group differences in . The differences may also be due, in part, to using five of the above-water systems as a refere

Details

Database :
OAIster
Journal :
Remote Sensing (2072-4292) (MDPI AG), 2020-05 , Vol. 12 , N. 10 , P. 1587 (50p.)
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286175754
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.3390.rs12101587