Back to Search Start Over

Screening of a large cohort of leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations

Authors :
Mackay, D.S.
Borman, A.D.
Sui, R.
Born, L.I. van den
Berson, E.L.
Ocaka, L.A.
Davidson, A.E.
Heckenlively, J.R.
Branham, K.
Ren, H.
Lopez, I.
Maria, M.
Azam, M.
Henkes, A.
Blokland, E.
Group, L.C.A.S.
Andreasson, S.
Baere, E. de
Bennett, J.
Chader, G.J.
Berger, W.
Golovleva, I.
Greenberg, J.
Hollander, A.I. den
Klaver, C.C.
Klevering, B.J.
Lorenz, B.
Preising, M.N.
Ramsear, R.
Roberts, L.
Roepman, R.
Rohrschneider, K.
Wissinger, B.
Qamar, R.
Webster, A.R.
Cremers, F.P.M.
Moore, A.T.
Koenekoop, R.K.
Mackay, D.S.
Borman, A.D.
Sui, R.
Born, L.I. van den
Berson, E.L.
Ocaka, L.A.
Davidson, A.E.
Heckenlively, J.R.
Branham, K.
Ren, H.
Lopez, I.
Maria, M.
Azam, M.
Henkes, A.
Blokland, E.
Group, L.C.A.S.
Andreasson, S.
Baere, E. de
Bennett, J.
Chader, G.J.
Berger, W.
Golovleva, I.
Greenberg, J.
Hollander, A.I. den
Klaver, C.C.
Klevering, B.J.
Lorenz, B.
Preising, M.N.
Ramsear, R.
Roberts, L.
Roepman, R.
Rohrschneider, K.
Wissinger, B.
Qamar, R.
Webster, A.R.
Cremers, F.P.M.
Moore, A.T.
Koenekoop, R.K.
Source :
Human Mutation; 1537; 1546; 1059-7794; 11; 34; ~Human Mutation~1537~1546~~~1059-7794~11~34~~
Publication Year :
2013

Abstract

Item does not contain fulltext<br />This study was undertaken to investigate the prevalence of sequence variants in LCA5 in patients with Leber congenital amaurosis (LCA), early-onset retinal dystrophy (EORD), and autosomal recessive retinitis pigmentosa (arRP); to delineate the ocular phenotypes; and to provide an overview of all published LCA5 variants in an online database. Patients underwent standard ophthalmic evaluations after providing informed consent. In selected patients, optical coherence tomography (OCT) and fundus autofluorescence imaging were possible. DNA samples from 797 unrelated patients with LCA and 211 with the various types of retinitis pigmentosa (RP) were screened by Sanger sequence analysis of all LCA5 exons and intron/exon junctions. Some LCA patients were prescreened by APEX technology or selected based on homozygosity mapping. In silico analyses were performed to assess the pathogenicity of the variants. Segregation analysis was performed where possible. Published and novel LCA5 variants were collected, amended for their correct nomenclature, and listed in a Leiden Open Variation Database (LOVD). Sequence analysis identified 18 new probands with 19 different LCA5 variants. Seventeen of the 19 LCA5 variants were novel. Except for two missense variants and one splice site variant, all variants were protein-truncating mutations. Most patients expressed a severe phenotype, typical of LCA. However, some LCA subjects had better vision and intact inner segment/outer segment (IS/OS) junctions on OCT imaging. In two families with LCA5 variants, the phenotype was more compatible with EORD with affected individuals displaying preserved islands of retinal pigment epithelium. One of the families with a milder phenotype harbored a homozygous splice site mutation; a second family was found to have a combination of a stop mutation and a missense mutation. This is the largest LCA5 study to date. We sequenced 1,008 patients (797 with LCA, 211 with arRP) and identified 18 probands with LCA5 mu

Details

Database :
OAIster
Journal :
Human Mutation; 1537; 1546; 1059-7794; 11; 34; ~Human Mutation~1537~1546~~~1059-7794~11~34~~
Publication Type :
Electronic Resource
Accession number :
edsoai.on1284030746
Document Type :
Electronic Resource