Back to Search
Start Over
N-glycan mediated adhesion strengthening during pathogen-receptor binding revealed by cell-cell force spectroscopy
- Source :
- Scientific Reports; 2045-2322; 7; 6713; ~Scientific Reports~~~~~2045-2322~~7~~6713
- Publication Year :
- 2017
-
Abstract
- Contains fulltext : 176896.pdf (publisher's version ) (Open Access)<br />Glycan-protein lateral interactions have gained increased attention as important modulators of receptor function, by regulating surface residence time and endocytosis of membrane glycoproteins. The pathogen-recognition receptor DC-SIGN is highly expressed at the membrane of antigen-presenting dendritic cells, where it is organized in nanoclusters and binds to different viruses, bacteria and fungi. We recently demonstrated that DC-SIGN N-glycans spatially restrict receptor diffusion within the plasma membrane, favoring its internalization through clathrin-coated pits. Here, we investigated the involvement of the N-glycans of DC-SIGN expressing cells on pathogen binding strengthening when interacting with Candida fungal cells by using atomic force microscope (AFM)-assisted single cell-pathogen adhesion measurements. The use of DC-SIGN mutants lacking the N-glycans as well as blocking glycan-mediated lateral interactions strongly impaired cell stiffening during pathogen binding. Our findings demonstrate for the first time the direct involvement of the cell membrane glycans in strengthening cell-pathogen interactions. This study, therefore, puts forward a possible role for the glycocalyx as extracellular cytoskeleton contributing, possibly in connection with the intracellular actin cytoskeleton, to optimize strengthening of cell-pathogen interactions in the presence of mechanical forces.
Details
- Database :
- OAIster
- Journal :
- Scientific Reports; 2045-2322; 7; 6713; ~Scientific Reports~~~~~2045-2322~~7~~6713
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1284030623
- Document Type :
- Electronic Resource